
M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 6-1

6. EXAMPLE PROGRAMS

Included with the M-API software are some example programs. These programs serve
two purposes:

1. They offer specific examples of how to use the M-API routines.

2. They give the user an opportunity to verify, after installation, that the M-API routines
were built correctly and are functioning as expected.

The example programs can be built by typing: "make test" while in the examples
directory. The example programs can be executed, and if necessary built, with the
output piped to the file “example.output” by typing: “make run”. Individual routines can
be built by typing his or her: "make name". The user will have to edit the makefile to
work as expected for their version on UNIX.

NOTE: Name must be replaced with the example program name (e. g., example1).

The following example programs create, write, and read MODIS HDF arrays.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 6-2

6.1 Example 1: Creating a Floating Point Array in FORTRAN

This FORTRAN program demonstrates how to create a 32-bit floating point array. The
HDF file “arrex1.hdf” is created using OPMFIL. An initialized array containing 1's is
created with CRMAR and then written to the HDF file with PMAR. Once the file has
been written the file is closed with a call to CPMFIL. CPMFIL is used since it is a new
HDF file.

List of routines called:

Name Description

OPMFIL Opens a MODIS file (file access r, w, a).

CRMAR Initilizes an array structure in a file.

PMAR Writes a subarray into an array structure.

CPMFIL Completes and closes a MODIS file.

6.1.1 Source Code Listing for Example 1

PROGRAM example1
 IMPLICIT NONE
 INCLUDE 'mapi.inc'

C This example program demonstrates how to open a new MODIS HDF file,
C create a new data array, put the new data array into the file, and close
C the MODIS HDF file.
C

C DATA ARRAY
REAL DATF(32,64)

C MODIS FILE POINTER ARRAY
INTEGER MODFIL(3)

C DIMENSION ARRAY
INTEGER DIMS(2)

C Start indices (0-based) for writing array
INTEGER STA(2)

C rank and error code
INTEGER RANK, IER

C Number of handles
INTEGER NUMHANDLES

C Array and group names

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 6-3

CHARACTER*20 FILNM, ARRNM, GRPNM

C Data type
CHARACTER*(DATATYPELENMAX) DTYPE

C mdHandles array of ECS metadata groups in MCF
CHARACTER*20 MDHANDLES

C Names of Global atributes to store ECS metadata in
CHARACTER*20 HDFATTNMS

C Initialize values
DATA DATF/2048*1/
DATA STA/2*0/
DATA DIMS/32,64/
DATA RANK/2/
DATA ARRNM/'DATAFLOAT'/, GRPNM/’ ’ /
DATA FILNM/'arrex1.hdf'/
DATA NUMHANDLES/0/
DTYPE = R32

print*,'*** Example1 ***'

C Open file
IER = OPMFIL(FILNM, CREATE_FILE, MODFIL)

IF(IER.EQ.MAPIOK) THEN
PRINT *,'Openning of Modis file was successful!'
END IF

C Create array
PRINT *,'Creating a Data array!'
IER = CRMAR(MODFIL, ARRNM, GRPNM, DTYPE, RANK, DIMS)

C Write to the array (note that the entire array is being written, so
C data dimensions are equal to array dimensions)

IF(IER .EQ. MAPIOK) THEN
 PRINT *,'Writing array to MODIS HDF file!'
 IER = PMAR(MODFIL,ARRNM,GRPNM,STA,DIMS,DATF)

END IF
 PRINT *,'Wrote array to MODIS HDF file!'

C New MODIS file so use CPMFIL to close the file
 IER = CPMFIL(MODFIL, MDHANDLES, HDFATTNMS, NUMHANDLES)

IF(IER .EQ. MAPIOK) THEN
 PRINT *,'MODIS file was successfully closed!'

END IF
 PRINT *,'example1 done'
 PRINT *,’ ’
 STOP

END
C End of example

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 6-4

6.2 Example 2: Creating a Floating Point Array in C

This program is similar to the FORTRAN program. The program demonstrates how to
create a 32-bit floating point array. When the program executes, an HDF file named
'arrex2.hdf is created for writing. A MODIS group name is created using
createMODISgroup. The group name written to the HDF file using addMODISgroup.
A 64 by 32 array is created using createMODISarray. The array is initialized to floating
point values ranging from 0 to 2048 and then written to the HDF file with
putMODISarray. Once the file has been written the file is closed with a call to
closeMODISfile.

List of routines called:

Name Description

openMODISfile Opens a MODIS file (file access: r, w, a).

createMODISgroup Creates a MODIS group name.

createMODISarray Initilizes an array structure in a file.

putMODISarray Writes a array into an HDF file.

completeMODISfile Completes a new MODIS file.

6.2.1 Source Code Listing for Example 2

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "mapi.h"
#include "PGS_MET.h"
#include "PGS_PC.h"

#define MCF_FILE 10250

/*
 * This example program demonstrates how to open a new MODIS HDF file,
 * create a new data array, put the new data array into the file,
 * and close the MODIS HDF file.
 */

main()
 {
 MODFILE *modfile; /* Modis file pointer */
 float data[64][32]; /* Data Array */
 long cksum = 0; /* array check sum */
 long dims[2] = {64,32}; /* Array dimensions */

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 6-5

 long sta[2] = {0,0}; /* Array start indices (0-based) */
 long rank = 2; /* Array rank */
 char dtype[] = R32; /* Array type */
 char arrnm[] = "DFLOAT"; /* Array name */
 char grpnm[] = "Fred's group"; /* Group name */
 char fname[] = "arrex2.hdf"; /* Modis file name */
 char faccess[] = "w"; /* Modis file access */
 int mapier; /* Error code */
 int i,j; /* counters */
 int ret_val;
 double time1 = 90000000.0;
 double time2 = 90000100.0;
 double glats[4] = {10., 20., 30., 40.};
 double glons[4] = {50., 60., 70., 80.};
 long int gseq[4] = {1, 2, 3, 4};
 double douval=0.0;
 float floval=0.0;
 int intval=0;
 char *attrval;

 PGSt_MET_all_handles mdHandles;
 ECSattr_names_for_all_handles HDFattrnms;
 long Numhandles = 2;

 printf(" *** Example2 ***\n");

 strcpy (HDFattrnms[1], MECS_CORE);
 strcpy (HDFattrnms[2], MECS_PRODUCT);

 /* initialize the MCF file */
 ret_val = PGS_MET_Init(MCF_FILE, mdHandles);
 if (ret_val != PGS_S_SUCCESS)
 printf("error in PGS_MET_Init %d\n",ret_val);

 /* Add metadata */
 douval = 100.;
 ret_val = PGS_MET_SetAttr(mdHandles[1], MCORE_SIZE_OF_GRANULE, &douval);
 if (ret_val != PGS_S_SUCCESS)
 printf("error in PGS_MET_SetAttr %d\n",ret_val);

 /* Try to retrieve this value from the metadata */
 douval = 0;
 ret_val = PGS_MET_GetSetAttr(mdHandles[1], MCORE_SIZE_OF_GRANULE, &douval);
 if (ret_val != PGS_S_SUCCESS)
 printf("error in PGS_MET_GetSetAttr %d\n",ret_val);
 printf("MCORE_SIZE_OF_GRANULE %lf\n", douval);

 attrval = (char *) malloc(27);

 attrval = "MOD03";
 ret_val = PGS_MET_SetAttr(mdHandles[1], "SHORTNAME", &attrval);
 if (ret_val != PGS_S_SUCCESS)
 printf("error in PGS_MET_SetAttr %d\n",ret_val);

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 6-6

 attrval = "MODIS Geolocation";
 ret_val = PGS_MET_SetAttr(mdHandles[1], "LONGNAME", &attrval);
 if (ret_val != PGS_S_SUCCESS)
 printf("error in PGS_MET_SetAttr %d\n",ret_val);

 attrval = "1996-01-01T00:00:00.000000Z";
 ret_val = PGS_MET_SetAttr(mdHandles[1],"RANGEBEGINNINGDATETIME", &attrval);
 if (ret_val != PGS_S_SUCCESS)
 printf("error in PGS_MET_SetAttr %d\n",ret_val);

 attrval = "1996-01-01T00:02:30.000000Z";
 ret_val = PGS_MET_SetAttr(mdHandles[1], "RANGEENDINGDATETIME", &attrval);
 if (ret_val != PGS_S_SUCCESS)
 printf("error in PGS_MET_SetAttr %d\n",ret_val);

 /* Try setting a value again to see if we can modify them */

 attrval = "1996-01-01T00:02:31.000000Z";
 ret_val = PGS_MET_SetAttr(mdHandles[1], "RANGEENDINGDATETIME", &attrval);
 if (ret_val != PGS_S_SUCCESS)
 printf("error in PGS_MET_SetAttr %d\n",ret_val);

 ret_val = PGS_MET_SetAttr(mdHandles[1], MCORE_GRING_POINT_LAT, glats);
 if (ret_val != PGS_S_SUCCESS)
 printf("error in PGS_MET_SetAttr %d\n",ret_val);

 ret_val = PGS_MET_SetAttr(mdHandles[1], MCORE_GRING_POINT_LON, glons);
 if (ret_val != PGS_S_SUCCESS)
 printf("error in PGS_MET_SetAttr %d\n",ret_val);

 douval = 40;
 ret_val = PGS_MET_SetAttr(mdHandles[1], MCORE_NORTH_BOUND, &douval);
 if (ret_val != PGS_S_SUCCESS)
 printf("error in PGS_MET_SetAttr %d\n",ret_val);

 douval = 10;
 ret_val = PGS_MET_SetAttr(mdHandles[1], MCORE_SOUTH_BOUND, &douval);
 if (ret_val != PGS_S_SUCCESS)
 printf("error in PGS_MET_SetAttr %d\n",ret_val);

 douval = 50;
 ret_val = PGS_MET_SetAttr(mdHandles[1], MCORE_WEST_BOUND, &douval);
 if (ret_val != PGS_S_SUCCESS)
 printf("error in PGS_MET_SetAttr %d\n",ret_val);

 douval = 80;
 ret_val = PGS_MET_SetAttr(mdHandles[1], MCORE_EAST_BOUND, &douval);
 if (ret_val != PGS_S_SUCCESS)
 printf("error in PGS_MET_SetAttr %d\n",ret_val);

 attrval = "Input file 1";
 ret_val = PGS_MET_SetAttr(mdHandles[1], "INPUTPOINTER.1", &attrval);
 if (ret_val != PGS_S_SUCCESS)
 printf("error in PGS_MET_SetAttr %d\n",ret_val);

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 6-6 a

 attrval = "Ancillary input file 1";
 ret_val = PGS_MET_SetAttr(mdHandles[1], "ANCILLARYINPUTPOINTER.1",

 &attrval);
 if (ret_val != PGS_S_SUCCESS)
 printf("error in PGS_MET_SetAttr %d\n",ret_val);

 attrval = "Ancillary input file 2";
 ret_val = PGS_MET_SetAttr(mdHandles[1], "ANCILLARYINPUTPOINTER.2",

 &attrval);
 if (ret_val != PGS_S_SUCCESS)
 printf("error in PGS_MET_SetAttr %d\n",ret_val);

 attrval = "MOD.AM1.sample.L1.95001.000000.95001";
 ret_val = PGS_MET_SetAttr(mdHandles[1], MCORE_GRAN_POINTER, &attrval);
 if (ret_val != PGS_S_SUCCESS)
 printf("error in PGS_MET_SetAttr %d\n",ret_val);

 attrval = "Processing history";
 ret_val = PGS_MET_SetAttr(mdHandles[1], "PROCESSINGHISTORYPOINTER",

&attrval);
 if (ret_val != PGS_S_SUCCESS)
 printf("error in PGS_MET_SetAttr %d\n",ret_val);

 attrval = "passed";
 ret_val = PGS_MET_SetAttr(mdHandles[1], MCORE_AUTO_QUALITY, &attrval);
 if (ret_val != PGS_S_SUCCESS)
 printf("error in PGS_MET_SetAttr %d\n",ret_val);

 attrval = "none";
 ret_val = PGS_MET_SetAttr(mdHandles[1], "QUALITYFLAGEXPLANATION",

&attrval);
 if (ret_val != PGS_S_SUCCESS)
 printf("error in PGS_MET_SetAttr %d\n",ret_val);

 intval = 0;
 ret_val = PGS_MET_SetAttr(mdHandles[1], MCORE_PERCENT_MISSING, &intval);
 if (ret_val != PGS_S_SUCCESS)
 printf("error in PGS_MET_SetAttr %d\n",ret_val);

 intval = 0;
 ret_val = PGS_MET_SetAttr(mdHandles[1], MCORE_PERCENT_OUT, &intval);
 if (ret_val != PGS_S_SUCCESS)
 printf("error in PGS_MET_SetAttr %d\n",ret_val);

 intval = 0;
 ret_val = PGS_MET_SetAttr(mdHandles[1], "QAPERCENTINTERPOLATEDDATA",

&intval);
 if (ret_val != PGS_S_SUCCESS)
 printf("error in PGS_MET_SetAttr %d\n",ret_val);

 intval = 40;
 ret_val = PGS_MET_SetAttr(mdHandles[1], MCORE_ORBIT_NUM, &intval);
 if (ret_val != PGS_S_SUCCESS)
 printf("error in PGS_MET_SetAttr %d\n",ret_val);

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 6-6 b

 attrval = "day";
 ret_val = PGS_MET_SetAttr(mdHandles[1], "OPERATIONMODE", &attrval);
 if (ret_val != PGS_S_SUCCESS)
 printf("error in PGS_MET_SetAttr %d\n",ret_val);

 attrval = "MOD.AM1.sample.l1.95001.0000000.95001";
 ret_val = PGS_MET_SetAttr(mdHandles[1], "MODISPRODUCTFILENAME", &attrval);
 if (ret_val != PGS_S_SUCCESS)
 printf("error in PGS_MET_SetAttr %d\n",ret_val);

 attrval = "1995-01-01T00:00:00.000000Z";
 ret_val = PGS_MET_SetAttr(mdHandles[1], "PROCESSINGDATETIME", &attrval);
 if (ret_val != PGS_S_SUCCESS)
 printf("error in PGS_MET_SetAttr %d\n",ret_val);

 attrval = "MODIS parameters";
 ret_val = PGS_MET_SetAttr(mdHandles[1], "SPSOPARAMETERS", &attrval);
 if (ret_val != PGS_S_SUCCESS)
 printf("error in PGS_MET_SetAttr %d\n",ret_val);

 intval = 20;
 ret_val = PGS_MET_SetAttr(mdHandles[1], "GRANULENUMBER", &intval);
 if (ret_val != PGS_S_SUCCESS)
 printf("error in PGS_MET_SetAttr %d\n",ret_val);

 attrval = "MODIS ATBD";
 ret_val = PGS_MET_SetAttr(mdHandles[2], "ALGORITHMPACKAGENAME", &attrval);
 if (ret_val != PGS_S_SUCCESS)
 printf("error in PGS_MET_SetAttr %d\n",ret_val);

 attrval = "GSFC";
 ret_val = PGS_MET_SetAttr(mdHandles[2], "PROCESSINGCENTER", &attrval);
 if (ret_val != PGS_S_SUCCESS)
 printf("error in PGS_MET_SetAttr %d\n",ret_val);

 for (i = 1; i <= Numhandles; i++){
 printf("mdHandles[%d] = %s\n",i,mdHandles[i]);
 printf("HDFattrnms[%d] = %s\n",i,HDFattrnms[i]);
 }

 /* open the MODIS file */
 modfile= openMODISfile(fname, faccess);
 if (modfile==NULL){
 fprintf (stderr, "Error openning %s exiting \n",fname);
 exit(-1);
 }else{
 printf(" File: %s opened, access mode %s\n",fname,faccess);
 }

 /* create a group for the data */
 mapier = createMODISgroup(modfile, grpnm, NULL);
 if (mapier == MFAIL){
 fprintf (stderr, "Error creating group, exiting\n");

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 6-6 c

 exit(-1);
 }else{
 printf(" Group created, Name: %s,\n", grpnm);
 }

 /* Create array */

 mapier = createMODISarray(modfile,arrnm,grpnm,dtype,rank,dims);
 if (mapier == MFAIL){
 fprintf (stderr, "Error creating array, exiting\n");
 exit(-1);
 }else{
 printf(" Array created, Name: %s,\n",arrnm);
 }

 /* Write to the array (note that the entire array is being
 written, so data dimensions are equal to array dimensions */

 for (i=0; i< dims[0]; i++){
 for (j=0; j< dims[1]; j++){
 data[i][j]= (i+j) + 1000.0 ;
 cksum = cksum + data[i][j];
 }
 }
 mapier = putMODISarray(modfile,arrnm,grpnm,sta,dims,data);
 if (mapier == MFAIL){
 fprintf (stderr, "Error writing array, exiting\n");
 exit(-1);
 }else{
 printf(" Array check sum: %d \n",cksum);
 printf(" Put the array in the file...\n");
 }

 /* Close the MODIS-HDF file */

 mapier = completeMODISfile(&modfile, mdHandles, HDFattrnms, Numhandles);
 if (mapier == MFAIL){
 fprintf (stderr, "Error closing file, exiting\n");
 exit(-1);
 }else{
 printf(" File closed successfully\n");
 }
 exit(0);
}
/* End of example */

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 6-6 d

(This page intentionally left blank)

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 6-7

6.3 Example 2a: Open an HDF File to Read and Print an Array

This program demonstrates how to open an existing HDF file for the purpose of
reading an array and then printing the arrray contents. When calling the program, at
the command line the HDF filename and the SDS name (array name) are entered.
For example: example1 created an HDF file named arrex1.hdf. The array or SDS
name was DATAFLOAT. So, if one wants to read this file, type the following
commands: example2a arrex1.hdf DATAFLOAT.

To read the HDF file created by example2, the commands are example2a arrex2.hdf
DFLOAT. The procedure for reading an array is to first get the information about the
array (i. e. the rank, dimensions, and datatype). This is done using getMODISarray.
An optional parameter which was set in this example to “Fred’s group” is the group
name. If the user wants to restrict the retrieval to a specific data group, then the group
name should be be defined . Otherwise, this value can be set to NULL. Once this
information is retrieved, then the system allocates enough memory to hold the array.
The array is read into memory using the getMODISarray routine. The HDF file is
closed using closeMODISfile. The array contents are then printed out.

List of routines called:

Name Description

openMODISfile Opens a MODIS file (file access: r, w, a).

getMODISardims Retrieves info about a MODIS HDF array.

MODISsizeof Determines size in bytes of an array type.

getMODISarray Retrieves an array or subarray.

closeMODISfile Closes a MODIS file.

6.3.1 Source Code Listing for Example 2a

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "mapi.h"

/*
** This example program demonstrates how to open a MODIS HDF file,
** read a given 2-D data array from the file, and close the file.
*/

main(int argc, char **argv)
 {
 MODFILE *modfile; /* Modis file pointer */
 void *data = NULL; /* Data Array */

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 6-8

 void *dp; /* Data Array scanner */
 long dims[2]; /* Array dimensions */
 long sta[2] = {0,0}; /* Array start indices (0-based) */
 long rank = 2; /* Array rank */
 char dtype[DATATYPELENMAX] = "\0"; /* Array type */
 char grpnm[] = "Fred's group"; /* Group name */
 long ier; /* Error code */
 int i,j; /* counters */
 float chksum = 0; /* check sum of array */

 /* Check calling arguments */
 if (argc != 3)
 {
 printf ("usage : example2a HDF_file_name SDS_name\n");
 exit(-1);
 }

 printf(" *** Example2a ***\n");
 /* Open the MODIS-HDF file */
 modfile= openMODISfile(argv[1], "r");
 if (modfile==NULL){
 printf(" Could not open MODIS-HDF file: %s for reading\n", argv[1]);
 exit(1);
 }else{
 printf(" File: %s opened for reading only\n", argv[1]);
 }

 /* Get dimensional information about the array */
 ier = getMODISardims(modfile,argv[2],grpnm,dtype,&rank,dims);

 printf(" group name = %s\n", grpnm);
 if (ier == MFAIL){
 printf(" Could not get dimensional information\n");
 }else{
 printf(" Dimensional data retrieved\n");
 }

 if ((ier == MAPIOK) && (rank == 2)){
data = malloc(dims[0] * dims[1] * MODISsizeof(dtype));

/* Read the entire array into the data buffer */
 ier = getMODISarray(modfile,argv[2],grpnm,sta,dims,data);
 }

 if (ier == MFAIL){
 printf("Errors reading array\n");
 exit(-1);
 }

 printf(" dtype: %s\n",dtype);
 /* Calculate sum of array and print */
 dp = data;
 for (i=sta[0]; i< (dims[0]+sta[0]); i++)
 for (j=sta[1]; j<(dims[1]+sta[1]); j++){

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 6-9

 chksum += *((float*)dp);
dp = (char *)dp + MODISsizeof(dtype);

 }
 printf(" Array check sum: %5.f \n", chksum);

 /* Close the MODIS-HDF file */
 ier = closeMODISfile(&modfile);
 if ((ier == MFAIL) || (data == NULL)){

free(data);
 printf (" example2a aborting\n");

exit(-1);
 }else{
 printf(" File closed successfully\n");
 }

 free(data);
 printf (" example2a done\n");
 exit(0);
 }
/* End of example */

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 6-10

6.4 Example 3: Create an Integer Array in FORTRAN

This FORTRAN program demonstrates how to create a 32-bit integer array and write it
to a file using a loop. The last dimension of the array is then given a descriptive label.
The HDF file 'arrex3.hdf' is created using OPMFIL. An initialized array containing 1's
is created with CRMAR. The last array dimension is named using PMDMIN. The array
is then written to the file by looping. Once the file has been written the file is closed
with a call to CPMFIL. CPMFIL is used since it is a new file.

List of routines called:

Name Description

OPMFIL Opens a MODIS file (file access r, w, a).

CRMAR Initializes an array structure in a file.

PMDMIN Writes an array dimension name to a file.

PMAR Writes a subarray into an array structure.

CPMFIL Completes a new MODIS file.

6.4.1 Source Code Listing for Example 3

PROGRAM example3
 IMPLICIT none

INCLUDE 'mapi.inc'
 integer pgs_met_init
 integer pgs_met_setattr_d
 integer pgs_met_getsetattr_d

C DATA ARRAY
INTEGER IDATA(15,20)

C Counter
INTEGER I

C MODIS FILE POINTER ARRAY
INTEGER MODFIL(MODFILLEN)

C DIMENSION ARRAY
INTEGER DIMS(3)

C Start indices (0-based) for writing array
INTEGER STA(3)

C rank and error code
INTEGER RANK, IER

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 6-11

C Number of handles
 INTEGER NUMHANDLES

C Array and group names
CHARACTER*20 ARRNM, GRPNM, FILNM

C Dimension name
CHARACTER*20 DIMNM

C Data type
CHARACTER*(DATATYPELENMAX) DTYPE, ATYPE

C Array Data type, array attribute
CHARACTER*20 ATTR

C Attribute value
CHARACTER*100 ATTRV

C mdHandles array of ECS metadata groups in MCF
 CHARACTER*(49) MDHANDLES(20)
C names of lobal attributes to store ECS metadata in
 CHARACTER*(MAX_ECS_NAME_L-1) HDFATTNMS(PGSd_MET_NUM_OF_GROUPS)

 CHARACTER*40 attrVal

 INTEGER MODIS_FILE
 INTEGER MCF_FILE

 REAL*8 size

DATA IDATA/300*1/
DATA DIMS/15,20,100/
DATA STA/3*0/
DATA RANK/3/
DATA ARRNM /'DATASHORT'/
DATA GRPNM /' '/
DATA FILNM /'arrex3.hdf'/
DATA DIMNM /'RECORD NUMBER'/
DATA ATTR /MLONG_NAME/
DATA ATTRV /'This is the attribute value for dimension 2'/
DATA ATYPE /'CHARACTER*(*)'/

 DATA DTYPE /I32/
 DATA size/100./

 parameter(MODIS_FILE = 201000)
 parameter(MCF_FILE = 10250)

 HDFATTNMS(2) = 'CoreMetadata.0'
 HDFATTNMS(3) = 'ProductMetadata.0'

 NUMHANDLES = 2

 IER = pgs_met_init(MCF_FILE, MDHANDLES)
 if (IER .ne. PGS_S_SUCCESS)
 * type *, 'error in PGS_MET_Init', IER

 IER = PGS_MET_SetAttr_d(MDHANDLES(2),
 * 'SIZEMBECSDATAGRANULE', size)
 if (IER .ne. PGS_S_SUCCESS)

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 6-12

 * type *,'error in PGS_MET_SetAttr', IER

C /* Try to retrieve this value from the metadata */
 size = 0
C IER = PGS_MET_GetSetAttr_d(MDHANDLES(2),
C * 'SIZEMBECSDATAGRANULE',size)
C if (IER .ne. PGS_S_SUCCESS)
C * type *,'error in PGS_MET_GetSetAttr', IER
C type *,'SIZEMBECSDATAGRANULE', size

 IER = PGS_MET_SetAttr_d(MDHANDLES(2),
 * 'LONGNAME', attrVal)
 if (IER .ne. PGS_S_SUCCESS)
 * type *,'error in PGS_MET_SetAttr', IER

C Open file
IER = OPMFIL(FILNM, CREATE_FILE, MODFIL)

 IF(IER.EQ.MAPIOK) THEN
 PRINT *,'Openning of Modis file was successful!'
 END IF

C Create the array
 PRINT *,'Creating a Data array!'

IER = CRMAR(MODFIL,ARRNM,GRPNM,DTYPE,RANK,DIMS)
IF(IER .EQ. MAPIOK) THEN

C Name the last dimension
 PRINT *,'Naming the last dimension!'
 IER = PMDMIN(MODFIL,ARRNM,GRPNM,0,ATTR,ATYPE,100,ATTRV)
 ENDIF
 IF (IER .EQ. MAPIOK) THEN
 PRINT *,'Writing array to MODIS HDF file!'
C Re-define the last dimension for writing the array
 DIMS(3) = 1
C Loop on the last dimension to write the array.
 DO I=1,100
C and write to the array
 STA(3) = I - 1
 IER = PMAR(MODFIL,ARRNM,GRPNM,STA,DIMS,IDATA)
 END DO
 ENDIF
C Close HDF file
C ret_val = cpmfil(metafile, mdhandles, hdfattnms, numhandles)
C print*,'ret_val = ',ret_val

 IER = CPMFIL(MODFIL, MDHANDLES, HDFATTNMS, NUMHANDLES)
C IER = CLMFIL(MODFIL)
 IF(IER .EQ. MAPIOK) THEN
 PRINT *,'MODIS file was successfully closed!'
 END IF

C End of example
 STOP
 END

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 6-13

6.5 Example 4: Create an Integer Array in C

This program performs the same operation as the FORTRAN program except that it is
written in C. The program demonstrates how to create a 32-bit integer array. The last
dimension of the array is named. An array is created using createMODISfile. The last
array dimension is named using putMODISdiminfo. The integer array is initialized to
one, and then written to the hdf file with putMODISarray. Once the file has been
written the file is closed with a call to completeMODISfile.

List of routines called:

Name Description

openMODISfile Opens a MODIS file (file access r, w, a).

createMODISarray Initializes a MODIS HDF array.

putMODISarray Writes an array or subarray to a MODIS file.

completeMODISfile Completes a new MODIS file.

6.5.1 Source Code Listing for Example 4

#include <stdio.h>
#include <string.h>
#include "mapi.h"

/*
** This example program demonstrates opening a new MODIS HDF file,
** creating a new data array, writing that array to the HDF file,
** and closing the HDF file.
*/

main(){
 MODFILE *modfile; /* Modis file pointer */
 long dims[3] = {100,20,15}; /* Array dimensions */
 long dnum = 2; /* Dimension number to receive info */
 long sta[3] = {0, 0, 0}; /* Array start indices (0-based) */
 long rank = 3; /* Array rank */
 char dtype[] = I32; /* Array type, set to M-API macro */
 char arrnm[] = "DATASHORT"; /* Array name */
 char attr[] = MLONG_NAME; /* Array attribute, set to M-API macro*/
 char attrv[] = "some really long name"; /* Array attribute value */
 char atype[] = TXT; /* Array attribute data type */
 char grpnm[] = "\0"; /* Group name */
 char fname[] = "arrex4.hdf"; /* File name */
 char acc_mode[] = "w"; /* File access mode */

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 6-14

 long ier; /* Error code */
 int i,j,k; /* counters */
 int idata[20][15]; /* Data Array */
 PGSt_MET_all_handles mdHandles;
 ECSattr_names_for_all_handles HDFattrnms;
 long NumHandles = 0;

 printf(" *** Example4 ***\n");

 memset((void *)idata,1,300);

 /* Create the MODIS-HDF file */
 modfile= openMODISfile(fname,acc_mode);
 if (modfile==NULL) {
 printf("Error opening: %s\n",fname);
 exit(1);
 }else{
 printf("File: %s, opened.\n",fname);
 }
 /* Create array */
 ier = createMODISarray(modfile,arrnm,grpnm,dtype,rank,dims);
 if (ier == MAPIOK) {
 printf("Array created: %s\n",arrnm);
 /* Label the last dimension */
 ier = putMODISdiminfo(modfile, arrnm, grpnm, dnum,

 attr, atype, strlen(attrv),(void *) attrv);
 if (ier == MFAIL){
 fprintf (stderr, "Error putting diminfo: exiting\n");
 exit(-1);
 }else{
 printf("Dimension %d, putting attribute info: %s =
%s\n",dnum,attr,attrv);
 }
 /* Re-define the last dimension for writing the array */
 dims[0] = 1;

 /* Loop on the last dimension to write the array. */
 for (i=0; (i < 100) && (ier == MAPIOK); i++) {

 /* Set the start index for the last dimension and write to the array */
 sta[0] = i;
 ier = putMODISarray(modfile,arrnm,grpnm,sta,dims,(void *)idata);
 }
 if (ier == MFAIL){
 fprintf (stderr, "Error writing array, exiting\n");
 exit(-1);
 }else{
 printf("Array written: %s\n",arrnm);
 }
 }
 /* Close the MODIS-HDF file */
 ier = completeMODISfile(&modfile, mdHandles, HDFattrnms, NumHandles);
 if (ier == MFAIL){
 fprintf (stderr, "Error closing file, exiting\n");

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 6-15

 exit(-1);
 }else{
 printf("File closed successfully.\n");
 }
 exit(0);
}
/* End of example */

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 6-16

6.6 Example 5: Read an Integer Array

This FORTRAN program demonstrates how to read a 32-bit integer array. The HDF
file, arrex3.hdf, (created by example3) is openned for reading using OPMFIL. The
array data is read in to memory using GMAR. Once the array has been read into
memory, the file is closed with a call to CLMFIL.

List of routines called:

Name Description

OPMFIL Opens a MODIS file (file access r, w, a).

GMAR Retrieves an array from an HDF file.

CLMFIL Closes preexisting MODIS file.

6.6.1 Source Code Listing for Example 5

program example5
c EXAMPLE 5: Read the array from the previous example by
c looping on the second array index, using FORTRAN.

INCLUDE 'mapi.inc'
c DATA ARRAY

INTEGER JDATA(15,100)

C Array Checksum
INTEGER cksum

c MODIS FILE POINTER ARRAY
INTEGER MODFIL(MODFILLEN)

C DIMENSION ARRAY
INTEGER DIMS(3)

C Start indices (0-based) for reading array
INTEGER STA(3)

C Error code
INTEGER IER

C Array and group names
CHARACTER*20 ARRNM, GRPNM, FILNM

DATA DIMS/15,20,100/
DATA STA/3*0/,cksum/0/
DATA ARRNM/'DATASHORT'/, GRPNM/’ ’ /
DATA FILNM/'arrex3.hdf'/

print*,'*** Example5 ***'

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 6-17

C Open file
IER = OPMFIL(FILNM, 'r', MODFIL)
IF (IER .EQ. MAPIOK) THEN

C Re-define the second dimension for reading the array
 DIMS(2) = 1
 i=1

C Loop on the second dimension to read the array.
 DO while (i .le. 20 .and. ier .eq. MAPIOK)

C Set the start index for the second dimension and read
C the array

 STA(2) = I - 1
 IER = GMAR(MODFIL,ARRNM,GRPNM,STA,DIMS,JDATA)
 i = i+1
 END DO
 IF (IER .EQ. MAPIOK) THEN
 do m=1,100
 do l=1,15
 cksum = cksum + jdata(l,m)
 end do
 end do
 print*,'Array retrieved: ',arrnm
 print*,'Checksum: ',cksum
 else
 print*,'GMAR: failed @ I=',i
 ENDIF
ENDIF

C Close file
IER = CLMFIL(MODFIL)
if (ier .ne. MFAIL)then
 print*,'File closed.'
else
 print*,'Error closing file.'
endif

C End of example
STOP
END

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 6-18

Table 6-1 structure is created with the name “Bolide Heights”. The data group
argument is set to NULL so the data structure is not placed in any data group
‘subdirectory ‘.

Table 6-1 Sample Data Table
Bolide Heights

Record
Number

 Latitude
(degrees)

Longitude
(degrees)

Altitude
(m)

Number Type float32 float32 int32

0 40.2 -77.8 23500

1 -22.8 132.5 37000

2 63.2 93.6 2200

The following example routines create, read, and write MODIS HDF tables.

6.7 Example 6: Create a MODIS HDF Table

This FORTRAN program demonstrates how to create a MODIS HDF table. The table
consists of three columns and three rows (see Table 6-1 Sample Data Table). Two
columns are real data and one column is integer data. As in the previous examples an
HDF file ('tblex6.hdf') is openned for writing using OPMFIL. An HDF table is created
using CRMTBL. The table is then written to the HDF file using PMTBL. Once the file
has been written the file is closed with a call to CLMFIL.

List of routines called:

Name Description

OPMFIL Opens a MODIS file (file access r, w, a).

CRMTBL Creates a table for accessing.

PMTBL Writes a table to an HDF file.

CPMFIL Completes a new MODIS file.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 6-19

6.7.1 Source Code Listing for Example 6

C This program will create a modis HDF table called "Bolide Heights"
C by using CMTBL, then put the 3 records of information in to the
C table by using PMTBL.
C===
 program example6
 IMPLICIT NONE
 INCLUDE 'mapi.inc'

C DATA BUFFER
 byte data1(12)
C MODIS file pointer array
 integer mfile(MODFILLEN)
C Number of records to access and location of first record to access
 integer recno, start
C Error code
 integer ier
C File, table name, table class, and group names
 character*80 filen,tbname,group,classname
C Table field names
 character*80 field
C Data type, using M-API parameter to size string
 character*(3*DATATYPELENMAX) dtype
C Data arrays and type-matched buffers
 real lat(3), lon(3), f1, f2
 integer height(3), i3
 integer i
C mdHandles array of ECS metadata groups in MCF
 character*20 mdhandles

C Names of Global atributes to store ECS metadata in
 character*20 hdfattnms

C Number of handles
 integer numhandles

data filen /'tblex6.hdf'/
 data tbname /'Bolide Heights'/
 data group /’ ’ /
 data classname /'Fake Data class'/
 data lat /40.50, -22.81, 08.10/
 data lon /-80.22, -43.25, 98.32/
 data height /400, 0, 0/
 data numhandles/0/

C Map data buffer to data type-matched buffers
 EQUIVALENCE (data1(1), f1)
 EQUIVALENCE (data1(5), f2)
 EQUIVALENCE (data1(9),i3)

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 6-20

C Set field names and corresponding data type
 field ='Latitude(degrees),Longitude(degrees),Altitude(m)'
 dtype = R32 //','// R32 //','// I32

 PRINT*,'*** Example6 ***'

C Open file, using M-API parameter to define file access
 ier = OPMFIL(filen, CREATE_FILE, mfile)

 IF(IER.EQ.MAPIOK) THEN
 PRINT *,'Opened a Modis HDF file!'
 END IF

 if(ier.eq.MAPIOK) then
C create an HDF table
 ier = CRMTBL(mfile,tbname,classname,group,field,dtype)
 IF(IER .EQ. MAPIOK) THEN
 PRINT *,'Successfully created a HDF table!'
 END IF

C Put the data into the modis HDF table. Write 1 record
C at a time, always append it at the end of the table(-1).

recno = 1
start = -1

 do 1 i = 1, 3
 f1 = lat(i)
 f2 = lon(i)
 i3 = height(i)
 if(ier.eq.MAPIOK) then

 ier = PMTBL(mfile,tbname,group,start,recno,data1)
 end if

 1 continue
 IF(IER .EQ. MAPIOK) THEN
 PRINT *,'Successfully wrote the table to MODIS HDF file!'
 END IF

c complete the hdf file
 ier = CPMFIL(mfile, mdhandles, hdfattnms, numhandles)
 IF(IER .EQ. MAPIOK) THEN
 PRINT *,'MODIS HDF file was closed!'
 END IF

 end if
 stop
 end

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 6-21

6.8 Example 7: Read HDF Tables in FORTRAN

This FORTRAN program demonstrates how to read an HDF table. The HDF file,
tblex6.hdf, (created by example6) is openned for reading using OPMFIL. First, the
information about the table is retrieved using GNFLDS. The actual table data is then
retrieved using GMTBL. Once the table has been read into memory, the file is closed
with a call to CLMFIL.

List of routines called:

Name Description

OPMFIL Opens a MODIS file (file access: r, w, a).

GMFLDS Retrieves info on an HDF table.

GMTBL Reads an HDF table into memory.

CLMFIL Closes preexisitng MODIS file.

6.8.1 Source Code Listing for Example 7

C the test program will first open the modis HDF table "Bolide Heights"
C created by example6.f, then call GMFLDS and GMTBL to get the
C table's structural information and then the contents.
 program example7
 IMPLICIT NONE
 INCLUDE 'mapi.inc'

C MODIS file pointer array
 integer mfile(MODFILLEN)
C Table name, data group name, Table's field names, field data types, and
class
 character*80 tbname, group, fldnm, dtype, classname
C maximum length of character strings returned by GMFLDS
 integer strln
C Number of records in table, of fields (columns), of first record to read
 integer recno, fldno, start
C Return code, type-matched buffer, size of read-in buffer
 integer ret, height, bsize
C Type-matched buffers
 real lat, lon
C Read-in data buffer
 byte data(12)
 DATA tbname /'Bolide Heights'/
 DATA group /’ ’ /
C Map data buffer to data type-matched buffers
 EQUIVALENCE (data(1), lat)
 EQUIVALENCE (data(5), lon)
 EQUIVALENCE (data(9), height)

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 6-22

 print*,'*** Example7 ***'
C first open the HDF file.
 ret = OPMFIL("tblex6.hdf", "r", mfile)

 if (ret.eq.MAPIOK) then
C get the number of records and fields in the table, the table's class
C name, and the names of the fields and their respective data types.
 ret = GMFLDS(mfile, tbname, group, strln, recno,
 * fldno, fldnm, dtype, classname)

if (ret.eq.MAPIOK) then
 write(*,*) 'Field Names: ', fldnm
 write(*,*) 'Data Types: ', dtype

 write(*,*) 'Records:'
end if

C print the table contents, one record at a time
 do start = 0, recno-1
 if (ret.eq.MAPIOK) then
 bsize = 12
 ret = GMTBL(mfile,tbname,group,fldnm,start,1,bsize,data)
 if (ret.eq.MAPIOK) write(*,*) lat, lon, height
 else
 print*,'Error getting table row: ',start
 end if
 end do

C close the HDF file.
 ret = CLMFIL(mfile)
 IF(RET.NE.MAPIOK)THEN
 PRINT*,'Error closing file.'
 else
 print*,'File closed.'
 endif
 end if
 STOP
 END

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 6-23

6.9 Example 8: Read HDF Tables in C

This program performs the same operation as the FORTRAN program except that it is
written in C. At the command line the HDF filename, Vdata tablename, and fieldname
must be entered. For example: if the file created by example6 is to be read, the
following would be entered at the command line "example8 tablex6.hdf Bolide Heights
lat". In this example the Bolide Heights table would be accessed and the lat column
data would be read into memory. Once all the data are read into memory then the file
is closed with a call to closeMODISfile.

List of routines called:

Name Description

openMODISfile Opens a MODIS file (file access r, w, a).

getMODISfields Retrieves HDF table info.

MODISsizeof Determines size in bytes of an array type.

getMODIStable Retrieves the HDF table data.

closeMODISfile Closes a preexisiting MODIS file.

6.9.1 Source Code Listing for Example 8

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "mapi.h"

/*
** This example program demonstrates how to open a MODIS HDF file,
** read a single field from a given data table from the file,
** and close the file.
*/

main() {
 MODFILE *modfile; /* Modis file pointer */
 void *data = NULL; /* Data Array */
 void *dp; /* Data Array scanner */
 char *field_dtype; /* Table field's data type */
 int fieldnumber; /* Table field's number */
 char fldname[] = "\0"; /* Feild name to get */
 char *fieldnames ="\0"; /* Table's field names */
 char *datatypes = "\0"; /* their data types */
 char fname[]="tblex6.hdf"; /* Input file name */
 char vname[]="Bolide Heights"; /* Vdata name */
 long int stringlen; /* The length these strings need to be*/
 long int records; /* Number of records in the table and */

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 6-24

 long int fields; /* Number of fields (columns) in it */
 char *single_fieldname; /* Single field name extracted from */
 /* fieldnames */
 char grpnm[] = "\0"; /* Group name */
 long int size_of_buffer; /* Size of buffer used to get data */
 long int sta = 0; /* First record in table to read*/
 long ier = MFAIL; /* Error code */
 int i; /* counter */

 printf(" *** Example8 ***\n");
 /* Open the MODIS-HDF file */
 modfile = openMODISfile(fname, "r");
 if (modfile==NULL){
 printf ("File not found\n");
 exit(1);
 }else{
 printf("File: %s opened.\n",fname);
 }
 /* Get size of strings required to hold field names and data type info */
 /* getMODISfields will return MFAIL because the strings are too short (0) */
 /* but stringlen should return the length required. */
 /* Note that fieldnames and datatypes must NOT be set to NULL for the */
 /* string length information to be returned */

 stringlen = 0;
 (void)getMODISfields(modfile,vname,grpnm,&stringlen,NULL,NULL,

 fieldnames,datatypes,NULL);
 if (stringlen == 0){
 printf ("Table not found\n");
 }else{
 fieldnames = (char *)malloc(stringlen * sizeof(char));
 datatypes = (char *)malloc(stringlen * sizeof(char));

 /* Get dimensional information about the table */
 if (getMODISfields(modfile,vname,grpnm,&stringlen,&records,

 &fields,fieldnames,datatypes,NULL) == MAPIOK){
 printf("Each of the %d records contans these fields: %s\n",

 records, fieldnames);

 /* get the data type of the specified field
 determine the field number of the specified field */

 fieldnumber = 0;
 single_fieldname = strtok(fieldnames,",");
 /* get the data type of the field from the datatypes string */
 field_dtype = strtok(datatypes,",");
 while(single_fieldname != NULL) {

printf("FieldName: %s \tField dataype:
%s\n",single_fieldname,field_dtype);

/* allocate an array to retrieve the data. Note that since the
 data to be retrieved are all of the same data type,
 extracting the data from a generic byte buffer is not required.*/
size_of_buffer = records * MODISsizeof(field_dtype);
data = (void *)malloc(size_of_buffer);

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 6-25

/* Read field from every record in the table into the data buffer */
ier = getMODIStable(modfile,vname,grpnm,single_fieldname,
 sta,records,&size_of_buffer,data);
if(ier == MAPIOK){
 /* List contents of array */
 dp = data;
 for (i= 0; i < records; i++){
 if (strcmp(field_dtype,I8) == 0)
 printf ("record %d = %d\n",i,(int) *((char *)dp));
 else if (strcmp(field_dtype,UI8) == 0)
 printf ("record %d = %u\n",i,(unsigned int) *((unsigned char

 *)dp));
 else if (strcmp(field_dtype,I16) == 0)
 printf ("record %d = %hd\n",i, *((short int *)dp));
 else if (strcmp(field_dtype,UI16) == 0)
 printf ("record %d = %hu\n",i, *((unsigned short int *)dp));
 else if (strcmp(field_dtype,I32) == 0)
 printf ("record %d = %d\n",i, *((int *)dp));
 else if (strcmp(field_dtype,UI32) == 0)
 printf ("record %d = %u\n",i, *((unsigned int *)dp));
 else if (strcmp(field_dtype,R32) == 0)
 printf ("record %d = %g\n",i, *((float *)dp));
 else if (strcmp(field_dtype,R64) == 0)
 printf ("record %d = %lg\n",i, *((double *)dp));
 else if (strcmp(field_dtype,TXT) == 0)
 printf ("record %d = %c\n",i,(int) *((char *)dp));
 dp = (char *)dp + MODISsizeof(field_dtype);
 }
 free(data);
 if (*fieldnames != '\0'){
 free(fieldnames);
 free(datatypes);
 }
}else{
 printf("Error calling getMODIStable.\n");
}
single_fieldname = strtok(NULL,",");
field_dtype = strtok(NULL,",");

 }
 }
 }
 /* Close the MODIS-HDF file */
 if (closeMODISfile(&modfile) == MFAIL){
 printf ("Error closing file\n");
 exit(1);
 }else{
 printf ("File closed\n");
 }
 exit(0);
}
/* End of example */

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 6-26

6.10 Example 9: Read Data from ECS Metadata Files

This C program demonstrates how to read data from an ECS metadata file. (Note:
there exists metadata incompatablities between PGS Toolkit v 5.0 and 5.1. The input
file “metex9.hdf” supplied with the example programs was created using PGS Tool Kit
v 5.1.) AN HDF file “metex9.hdf” is opened for reading using openMODISfile. The
ECS metadata is retrieved from the HDF file using getMODISECSinfo. Once the
metadata has been retrieved, it is then parsed into individual strings using
sustrMODISECSinfo. The HDF file is closed using closeMODISfile.

List of routines called:

Name Description

openMODISfile Opens a MODIS file (file access r, w, a).

getMODISECSinfo Retrieves the ECS metadata.

substrMODISECSinfo Parses the retrieved ECS metadata.

closeMODISfile Closes a MODIS file.

6.10.1 Source Code Listing for Example 9

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "mapi.h"

main() {
 MODFILE *modfile; /* Modis file pointer */
 long int n_elements=20l; /* Number of metadata values

 to extract from value. */
 void *value;
 char access_mode[]="r";
 int ier; /* Error code */
 int i;
 long int n_strings=10;
 char *substr[10];
 int size = 256;

 char filename[]="metex9.hdf"; /* Input file */
 /* NOTE: This file included is for use with PGS Toolkit v 5.1
 it is a documented fact that metadata incompatibilities
 exist between PGS Toolkit 5.0 and 5.1, in this case older
 files generated w/ 5.0 may not work if M-API was linked with TK 5.1 */
 char PVLAttrName[]="CoreMetadata.0"; /* PVL Attribute name input */
 char parmName[] = "SHORTNAME"; /* parameter name */
 char data_type[] = "char *"; /* Data type of

 the parameter value */

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 6-27

 printf(" *** Example 9 ***\n");
 /* Allocate memory for value. */
 value = (void *)malloc(size);

 /* Open the MODIS-HDF file */
 modfile= openMODISfile(filename, access_mode);

 if (modfile==NULL) {
 printf("Unable to open file %s\n",filename);
 exit(1);
 }else{
 printf("Opening the file\n");
 }
 ier = getMODISECSinfo(modfile, PVLAttrName, parmName, data_type,

&n_elements, value);
 if (ier==MFAIL){
 printf("ier(getMODISECSinfo) = %d\n",ier);
 printf("n_elements = %ld\n",n_elements);
 printf("data_type = %s\n",data_type);
 printf("PVLAttrName = %s\n",PVLAttrName);
 printf("parmName = %s\n",parmName);
 }else{
 printf("n_elements = %ld\n",n_elements);
 printf("data_type = %s\n",data_type);
 }
 if ((ier == MAPIOK) && (n_elements != 0)){
 if (strcmp(data_type, I32) == 0)
 for (i=0; i < n_elements; i++)
 printf("value = %ld ",((int32 *)value)[i]);
 if (strcmp(data_type, R32) == 0)
 for (i=0; i < n_elements; i++)
 printf("value = %f ",((float32 *)value)[i]);
 if (strcmp(data_type, R64) == 0)
 for (i=0; i < n_elements; i++)
 printf("value = %f ",((float64 *)value)[i]);
 printf("\n");
 if (strcmp(data_type, TXT) == 0){
 ier = substrMODISECSinfo(value,n_elements,&n_strings,substr);
 if (ier==MFAIL){

 printf("ier(substrMODISECSinfo) = %d\n",ier);
 printf("Error printing the substrings\n");

 }else{
 printf("n_strings = %d\n",n_strings);
 printf("string(s) = \n");
 for (i=0;i<n_strings;i++)
 printf("%s\n",substr[i]);

 }
 }
 }

 /* Close the MODIS-HDF file */
 ier = closeMODISfile(&modfile);
 if (ier == MFAIL){
 printf("Error closing file\n");

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 6-28

 exit(1);
 }else{
 printf("File closed.\n");
 exit(0);
 }
}
/* End of example */

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 A -1

APPENDIX A: ACRONYMS

ABI Application Binary Interface

ANSI American National Standards Institute

ASCII American Standard for Computer Information Interchange

ATBD Algorithm Theoretical Basis Document

AVHRR Advanced Very High Resolution Radiometer

DAAC Distributed Active Archive Center

DEC Digital Equipment Corporation

DIF Data Interchange Format

ECS EOSDIS Core System

EOS Earth Observing System

EOSDIS Earth Observing System Data and Information System

ESDIS Earth Science Data and Information System

FTP File Transfer Protocol

GCMD Global Change Master Directory

GSC General Sciences Corporation

GSFC Goddard Space Flight Center

HDF Hierarchical Data Format

IDL Interactive Data Language

I/O Input/Output

IP Internet Protocol

L1 Level 1

L1B Level 1B

L2 Level 2

L3 Level 3

M-API MODIS Applications Programming Interface

MCF Metadata Configuration File

MODIS Moderate Resolution Imaging Spectroradiometer

NASA National Aeronautics and Space Administration

NCSA National Center for Supercomputing Applications

ODL Object Description Language

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 A -2

PCF Process Control Files

PGE Product Generation Executive

PVL Parameter Value Language

QA Quality Assurance

SAIC Science Applications International Corporation

SCF Science Computing Facilities

SD Scientific Data

SDP Science Data Processing

SDPS Science Data Processing Segment

SDS Scientific Data Set

SDST Science Data Support Team

SeaWiFS Sea-viewing Wide Field-of-view Sensor

SGI Silicon Graphics, Inc.

SSTG Science Software Transfer Group

STM Science Team Member

TLCF Team Leader Computing Facility

TRMM Tropical Rainfall Measuring Mission

URLs Uniform Resoure Locators

V Vgroup

VS Vdata Set

WWW World Wide Web

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 B-1

APPENDIX B: M-API-SUPPLIED CONSTANTS AND MACROS

The following tables show the constants that are found in the mapi.h (C) and mapi.inc
(FORTRAN):

Table B-1 Data Type Constants

Metadata Name/Description M-API Constant

array structure and dimension label string MLONG_NAME

array structure and dimension units string MUNITS

array structure and dimension format string MFORMAT

array structure coordinate system string MCOORD_SYS

array structure Calibration factor MSLOPE

array structure Calibration factor error MSLOPE_ERROR

array structure uncalibrated offset MOFFSET

array structure uncalibrated offset error MOFFSET_ERROR

array structure uncalibrated data HDF number type MNUM_TYPE

standard data valid range (Sdgetrange)[minimum,] MDATA_RANGE

array structure Fill Value MFILL_VALUE

ECS inventory metadata global attribute name MECS_CORE

ECS archive metadata global attribute name MECS_ARCHIVE

‘Same as above’ - returned for Backward compatibility MECS_PRODUCT

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 B-2

Table B-2 ECS Global Inventory Metadata Names

Note: User should refer to a particular file specification for a more precise layout of the
metadata for a product.

Metadata Name/Description M-API Constant

HDFattrNames = MECS_CORE

References to all ancillary input files, i.e. all input files other than
MODIS products.

MCORE_ANCIL_POINTER

Indicates the results of QA performed during product
generation.

MCORE_AUTO_QUALITY

Easternmost longitude of the granule spatial coverage. MCORE_EAST_BOUND

Flag indicating whether points are on an inner (exclusion) G-
ring.

MCORE_EXCLUS_GRING_FLG

Self-reference to granule. For V1, this field should be identical
to MODISPRODUCTFILENAME.

MCORE_GRAN_POINTER

Latitudes of a series of points representing the perimeter of the
granule spatial coverage (i.e., corners).

MCORE_GRING_POINT_LAT

Longitudes of a series of points representing the perimeter of
the granule spatial coverage.

MCORE_GRING_POINT_LON

Sequence numbers corresponding to perimeter latitudes and
longitudes.

MCORE_GRING_POINT_NUM

References to other MODIS product granules used as input for
this product.

MCORE_INPUT_POINTER

A descriptive name for the data collection. MCORE_LONG_NAME

Northernmost latitude of the granule spatial coverage. MCORE_NORTH_BOUND

The granule level flag applying both generally to the granule
and specifically to the parameters at the granule level. When
applied to a parameter, the flag refers to the quality of that
parameter in the granule.

MCORE_OPER_QUAL_FLAG

Number of satellite orbit during which the granule data were
collected.

MCORE_ORBIT_NUM

Reference to processing history file. MCORE_HISTORY_POINTER

Value indicating the percent of interpolated data in the granule MCORE_PERCENT_INTERP

Value indicating the percent of missing data in the granule. MCORE_PERCENT_MISSING

Value indicating the percent of data in the granule outside of
acceptable limits.

MCORE_PERCENT_OUT

A text explanation of the criteria used to set each quality lag;
including thresholds or other criteria.

MCORE_QUAL_EXPL

The date and time when the temporal coverage period of this
granule began.

MCORE_RANGE_START

The date and time when the temporal coverage period of this
granule ended.

MCORE_RANGE_END

Indicator of what reprocessing is planned for the granule. MCORE_TO_BE_REDONE

Indicator of the reprocessing status of the granule. MCORE_ACTUALLY_REDONE

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 B-3

Metadata Name/Description M-API Constant

The granule level flag applying to the granule and to the
parameters at the granule level. When applied to a parameter,
the flag refers to the quality of that parameter in the granule.

MCORE_SCIENCE_QUAL_FLG

The identifier for the data collection. MCORE_SHORT_NAME

The size of the data granule in megabytes. MCORE_SIZE_OF_GRANULE

Southernmost latitude of the granule spatial coverage. MCORE_SOUTH_BOUND

Westernmost longitude of the granule spatial coverage. MCORE_WEST_BOUND

The MODIS filename for this granule. MPROD_FILENAME

MODIS mode of operation. MPROD_OPERATIONMODE

This field contains the date and time the process that created
this file was started.

MPROD_PROC_DATE_TIME

The SPSO parameters for all data contained in this file, as listed
in the SPSO database.

MPROD_SPSO_PARAM

The number of this MODIS granule. MPROD_GRANULE_NUM

HDFattrNames = MECS_PRODUCT

The date this algorithm package version successfully passed
AI&T procedures and was accepted as an ECS standard
algorithm.

MPROD_ALGO_PCK_ACPT_DATE

This specifies the maturity of the algorithm package MPROD_ALGO_PACK_MAT_CODE

Algorithm package name MPROD_ALGO_PACK_NAME

The version of the algorithm package. MPROD_ALGO_PACK_VER

The long name by which the instrument is known. MPROD_INSTR_NAME

The short name assigned to the platform carrying the
instrument.

MPROD_PLATFORM_SHORT_NAM

DAAC where product is processed. MPROD_PROC_CENTER

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 B-4

Table B-3 Level 1A Macros

Metadata Name/Description M-API Constatnt

MOD01_L1A MOD01_L1A

Scan number M01SCAN_NUMBER

Frame count array M01FRAME_COUNT_ARRAY

Scan Type M01SCAN_TYPE

SD start time M01SD_START_TIME

SRCA start time M01SRCA_START_TIME

BB start time M01BB_START_TIME

SV start time M01SV_START_TIME

EV start time M01EV_START_TIME

SRCA calibration mode M01SRCA_CALIBRATION_MODE

Packet scan count M01PACKET_SCAN_COUNT

CCSDS Application Identifier M01CCSDS_APID

Packet Quick Look flag M01PACKET_QL

Mirror side M01MIRROR_SIDE

Scan quality array M01SCAN_QUALITY_ARRAY

Earth sector Pixel quality M01EV_PIX_QUAL

SD sector Pixel quality M01SD_PIX_QUAL

SRCA sector Pixel quality M01SRCA_PIX_QUAL

BB sector Pixel quality M01BB_PIX_QUAL

SV sector Pixel quality M01SV_PIX_QUAL

Bands 1 and 2 M01EV_250M

Bands 3 through 7 M01EV_500M

Bands 8 through 19 M01EV_1KM_DAY

Bands 20 through 36 M01EV_1KM_NITE

Bands 1 and 2 M01SD_250M

Bands 3 through 7 M01SD_500M

Bands 8 through 19 M01SD_1KM_DAY

Bands 20 through 36 M01SD_1KM_NITE

Bands 1 and 2 M01SRCA_250M

Bands 3 through 7 M01SRCA_500M

Bands 8 through 19 M01SRCA_1KM_DAY

Bands 20 through 36 M01SRCA_1KM_NITE

Bands 1 and 2 M01BB_250M

Bands 3 through 7 M01BB_500M

Bands 8 through 19 M01BB_1KM_DAY

Bands 20 through 36 M01BB_1KM_NITE

Bands 1 and 2 M01SV_250M

Bands 3 through 7 M01SV_500M

Bands 8 through 19 M01SV_1KM_DAY

Bands 20 through 36 M01SV_1KM_NITE

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 B-5

Metadata Name/Description M-API Constatnt

Eng. packet 1 data M01RAW_ENG_PKT_1

Eng. packet 2 data M01RAW_ENG_PKT_2

Mem. packet 1 data M01RAW_MEM_PKT_1

Mem. packet 2 data M01RAW_MEM_PKT_2

FPA DCR offset data M01FPA_DCR_OFFST

FAM Registration sample Delays M01FAM_SAMP_DELAY

Raw mirror encoder data M01RAW_MIR_ENC

Current/Prior HK Telem M01RAW_HK_TELEM

Sci Eng Data M01RAW_SCI_ENG

Parameter Table M01RAW_PARAM

View Sector Start M01RAW_VS_START

CP Event Log M01RAW_CP_EVENT

FR Event Log M01RAW_FR_EVENT

Raw s/c ancill data M01RAW_SC_ANCIL

Dump Request Info M01RAW_DUMP_REQ

Dump Data M01RAW_DUMP_DATA

FPA/AEM Config M01FPA_AEM_CONFIG

FPA Use M01FPA_USE

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 B-6

Table B-4 L1B/Geolocation Macros

Metadata Name/Description M-API Constant

Product type identifier M02_PROD_ID

Software Version M02VERSION

Number of Scans M02NUMBER_OF_SCANS

Number of Day mode scans M02NUMBER_OF_DAY_SCANS

Number of Night mode scans M02NUMBER_OF_NIGHT_SCANS

Max Total Frames M02MAX_TOTAL_FRAMES

Max Earth View Frames M02MAX_EARTH_FRAMES

Max SD Frames M02MAX_SD_FRAMES

Max SRCA Frames M02MAX_SRCA_FRAMES

Max BB Frames M02MAX_BB_FRAMES

Max SV Frames M02MAX_SV_FRAME

Scan types in product M02SCAN_TYPES

Dead MODIS Detectors M02DEAD_DETECTORS

Noisy MODIS Detectors M02NOISY_DETECTORS

Dead Thermistors M02DEAD_THERMISTORS

Noisy Thermistors M02NOISY_THERMISTORS

250 M Band Numbers for Reflected Solar Bands M02_250M_BAND_NUMS

500 M Band Numbers for Reflected Solar Bands M02_500M_BAND_NUMS

1000 M Band Numbers for Reflected Solar Bands" M02_1000M_REF_BAND_NUMS

Incomplete Scans M02PARTIAL_SCANS

Missing Packets M02MISSING_PACKETS

Packets with bad CRC M02BAD_PACKETS

Discarded Packets M02DISCARD_PACKETS

Swath Vgroup M02SWATHWATH

num_scale_factors M02NUM_SCALE_FACTORS

40*nscans M02_40NSCANS

20*nscans M02_20NSCANS

10*nscans M02_10NSCANS

nscans M02_NSCANS

40*nRefSBscans M02_40NREFSBSCANS

20*nRefSBscans M02_20NREFSBSCANS

10*nRefSBscans M02_10NREFSBSCANS

Band_250M M02BAND_250M

Band_500M M02BAND_500M

Band_1KM_RefSB M02BAND_1KM_REFSB

Band_1KM_Emissive M02BAND_1KM_EMIS

4*BB frames M02_4BB_FRAMES

2*BB frames M02_2BB_FRAMES

BB frames M02_BB_FRAMES

4*EV frames M02_4EV_FRAMES

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 B-7

Metadata Name/Description M-API Constant

2*EV frames M02_2EV_FRAMES

EV frames M02_EV_FRAMES

4*SD frames M02_4SD_FRAMES

2*SD frames M02_2SD_FRAMES

SD frames M02_SD_FRAMES

4*SRCA frames M02_4SRCA_FRAMES

2*SRCA frames M02_2SRCA_FRAMES

SRCA frames M02_SRCA_FRAMES

4*SV frames M02_4SV_FRAMES

2*SV frames M02_2SV_FRAMES

SV frames M02_SV_FRAMES

Instrument Data Stored as Scientific Data Sets M02SLOPE_AND_OFFSET

Black Body 250M Reflected Solar Bands Scaled
Integer Radiance

M02BB_250

Black Body 250M Reflected Solar Bands Scaled
Integer Radiance Uncertainty

M02BB_250_UNCERT

Earth View 250M Reflected Solar Bands Scaled
Integer Radiance

M02EARTH_RAD_250

Earth View 250M Reflected Solar Bands Scaled
Integer Radiance Uncertainty

M02EARTH_RAD_250_UNCERT

Solar Diffuser 250M Reflected Solar Bands
Scaled Integer Radiance

M02DIFFUSER_250

Solar Diffuser 250M Reflected Solar Bands
Scaled Integer Radiance Uncertainty

M02DIFFUSER_250_UNCERT

RCA 250M Reflected Solar Bands Scaled Integer
Radiance

M02SRCA_250

SRCA 250M Reflected Solar Bands Scaled Integer
Radiance Uncertainty

M02SRCA_250_UNCERT

Space View 250M Reflected Solar Bands Scaled
Integer Radiance

M02SPACE_250

Space View 250M Reflected Solar Bands Scaled
Integer Radiance Uncertainty

M02SPACE_250_UNCERT

Black Body 500M Reflected Solar Bands Scaled
Integer Radiance

M02BB_500

Black Body 500M Reflected Solar Bands Scaled
Integer Radiance Uncertainty

M02BB_500_UNCERT

Earth View 500M Reflected Solar Bands Scaled
Integer Radiance

M02EARTH_RAD_500

Earth View 500M Reflected Solar Bands Scaled
Integer Radiance Uncertainty

M02EARTH_RAD_500_UNCERT

Solar Diffuser 500M Reflected Solar Bands
Scaled Integer Radiance

M02DIFFUSER_500

Solar Diffuser 500M Reflected Solar Bands
Scaled Integer Radiance Uncertainty

M02DIFFUSER_500_UNCERT

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 B-8

Metadata Name/Description M-API Constant

SRCA 500M Reflected Solar Bands Scaled Integer
Radiance

M02SRCA_500

SRCA 500M Reflected Solar Bands Scaled Integer
Radiance Uncertainty

M02SRCA_500_UNCERT

Space View 500M Reflected Solar Bands Scaled
Integer Radiance

M02SPACE_500

Space View 500M Reflected Solar Bands Scaled
Integer Radiance Uncertainty

M02SPACE_500_UNCERT

Black Body 1000M Reflected Solar Bands Scaled
Integer Radiance

M02BB_1000

Black Body 1000M Reflected Solar Bands Scaled
Integer Radiance Uncertainty

M02BB_1000_UNCERT

Black Body 1000M Emissive Bands Scaled Integer
Radiance

M02BB_EMIS_1000

Black Body 1000M Emissive Bands Scaled Integer
Radiance Uncertainty

M02BB_EMIS_1000_UNCERT

Earth View 1000M Reflected Solar Bands Scaled
Integer Radiance

M02EARTH_RAD_1000

Earth View 1000M Reflected Solar Bands Scaled
Integer Radiance Uncertainty

M02EARTH_RAD_1000_UNCERT

Earth View 1000M Emissive Bands Scaled Integer
Radiance

M02EARTH_EMIS_RAD_1000

Earth View 1000M Emissive Bands Scaled Integer
Radiance Uncertainty

M02EARTH_EMIS_RAD_1000_UNCERT

Solar Diffuser 1000M Reflected Solar Bands
Scaled Integer Radiance

M02DIFFUSER_1000

Solar Diffuser 1000M Reflected Solar Bands
Scaled Integer Radiance Uncertainty

M02DIFFUSER_1000_UNCERT

Solar Diffuser 1000M Emissive Bands Scaled
Integer Radiance

M02DIFFUSER_EMIS_1000

Solar Diffuser 1000M Emissive Bands Scaled
Integer Radiance Uncertainty

M02DIFFUSER_EMIS_1000_UNCERT

SRCA 1000M Reflected Solar Bands Scaled Integer
Radiance

M02SRCA_1000

SRCA 1000M Reflected Solar Bands Scaled Integer
Radiance Uncertainty

M02SRCA_1000_UNCERT

SRCA 1000M Emissive Bands Scaled Integer
Radiance

M02SRCA_EMIS_1000

SRCA 1000M Emissive Bands Scaled Integer
Radiance Uncertainty

M02SRCA_EMIS_1000_UNCERT

Space View 1000M Reflected Solar Bands Scaled
Integer Radiance

M02SPACE_1000

Space View 1000M Reflected Solar Bands Scaled
Integer Radiance Uncertainty

M02SPACE_1000_UNCERT

Space View 1000M Emissive Bands Scaled Integer
Radiance

M02SPACE_EMIS_1000

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 B-9

Metadata Name/Description M-API Constant

Space View 1000M Emissive Bands Scaled Integer
Radiance Uncertainty

M02SPACE_EMIS_1000_UNCERT

Earth View 250M Reflected Solar Bands Scaled
Integer Reflectance

M02EARTH_REFL_250

Earth View 250M Reflected Solar Bands Scaled
Integer Reflectance Uncertainty

M02EARTH_REFL_250_UNCERT

Earth View 500M Reflected Solar Bands Scaled
Integer Reflectance

M02EARTH_REFL_500

Earth View 500M Reflected Solar Bands Scaled
Integer Reflectance Uncertainty

M02EARTH_REFL_500_UNCERT

Earth View 1000M Reflected Solar Bands Scaled
Integer Reflectance

M02EARTH_REFL_1000

Earth View 1000M Reflected Solar Bands Scaled
Integer Reflectance Uncertainty

M02EARTH_REFL_1000_UNCERT

Eng. Packet 1 Data M02ENG_PKT_1

Eng. Packet 2 Data M02ENG_PKT_2

Mem. Packet 1 Data M02MEM_PKT_1

Mem. Packet 2 Data M02MEM_PKT_2

FPA DCR offset Data M02FPA_DCR_OFFSET

FAM Registration Sample Delays M02FAM_DELAY

Raw Mirror Encder Data M02MIRROR_ENCODER

Current/Prior HK Telemtry M02HK_TELEM

Science Engineering Data M02SCI_ENG

Parameter Table M02PARM_TABLE

View Sector Start M02VIEW_START

CP Event Log M02CP_LOG

FR Event Log M02FR_LOG

Raw S/C Ancillary Data M02SC_ANCIL

Dump Request Information M02DUMP_REQUEST

Dump Data M02DUMP

Instrument Telemetry M02INSTR_TELEM

Level 1B Swath Metadata Written as Vdata M02SWATH_MD

Scan Number /* I32 */ M02SW_SCAN_NO

Total Frames /* I32 */ M02SW_TOT_FRAMES

EV Frames /* I32 */ M02SW_EV_FRAMES

SD Frames /* I32 */ M02SW_SD_FRAMES

SRCA Frames /* I32 */ M02SW_SRCA_FRAMES

BB Frames /* I32 */ M02SW_BB_FRAMES

SV Frames /* I32 */ M02SW_SV_FRAMES

Scan Type /* TXT */ M02SW_SCAN_TYPE

Scan Start Time /* F64 */ M02SW_SCAN_START

Mirror Side /* I32 */ M02SW_MIR_SIDE

Missing Packets /* I32 */ M02SW_MISS_PKTS

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 B-10

Metadata Name/Description M-API Constant

Packets With Bad CRC /* I32 */ M02SW_BAD_PKTS

Discarded Packets /* I32 */ M02SW_DISC_PKTS

Moon in SV Port /* I32 */ M02SW_MOON_OBS

On-Orbit Manuever /* TXT */ M02SW_MANEUVER

No. SV Outliers /* I32 */ M02SW_NUM_SV_OUTLIERS

No. BB Outliers /* I32 */ M02SW_NUM_BB_OUTLIERS

No. thermistor outliers /* I32 */ M02SW_NUM_THERM_OUTLIERS

Product type identifier M03_PROD_ID

Mirror wedge angle bias (V1) M03V1

Mirror axis error bias (gamma) M03GAMMA

Nominal mirror rotation rate M03MIR_RATE

Sample interval for 1 km bands M03T_FRAME

Mirror side 1 encoder-to-angle conversion
coefficients (quadratic)

M03POLY_M1

Mirror side 2 encoder-to-angle conversion
coefficients (quadratic)

M03POLY_M2

Spacecraft-to-instrument transformation matrix M03T_INST2SC

Instrument-to-mirror transformation matrix M03T_MIRR2INST

Instrument-to-telescope transformation matrix M03T_TEL2INST

Focal length for detectors (0 is ideal) M03FOCAL_LENGTH

Y offsets for ideal detectors M03Y_OFFSET

X offsets for 1 km bands M03X_OFF1KM

Y offsets for 1 km bands M03Y_OFF1KM

X offsets for 500 m bands M03X_OFF500

Y offsets for 500 m bands M03Y_OFF500

X offsets for 250 m bands M03X_OFF250

Y offsets for 250 m bands M03Y_OFF250

Band readout times relative to ideal band M03T_OFFSET

Scan number in granule M03S_NUM

Number of frames in scan M03NFRAMES

Scan start time (TAI) M03SSTIME

Scan center time (TAI) M03SCTIME

Mirror side M03MSIDE

Scan quality flags (TBD) M03SFLAGS

ECR orbit position at scan center time M03ORB_POS

ECR orbit velocity at scan center time M03ORB_VEL

ECR-to-instrument frame transformation matrix
at scan center time

M03T_INST2ECR

Spacecraft angular velocity in instrument frame M03ANG_VEL

Unit Sun vector in ECR frame at scan center
time

M03SUN_REF

Number of mirror encoder samples for this scan M03NUM_IMPULSE

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 B-11

Metadata Name/Description M-API Constant

Mirror angles from encoder data M03IMPULSE_ENC

Mirror encoder sample times from start of scan M03IMPULSE_TIME

Band-to-band geometric correction coefficients
(based upon algorithm in ATBD)

M03BAND_GEO

Geodetic longitude M03LONGITUDE

Geodetic latitude M03LATITUDE

Height above ellipsoid M03HEIGHT

Sensor zenith M03SENSOR_ZEN

Sensor azimuth M03SENSOR_AZ

Range (pixel to sensor) M03RANGE

Solar zenith M03SOLAR_ZENITH

Solar azimuth M03SOLAR_AZIMUTH

Geolocation flags M03GFLAGS

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 B-12

Table B-5 Atmosphere Macros

Metadata Name/Description Constant

MOD04_L2 M04L2_PROD_ID

MOD05_L2 M05L2_PROD_ID

MOD06_L2 M06L2_PROD_ID

MOD07_L2 M07L2_PROD_ID

MOD08_L2 M08L2_PROD_ID

MOD30_L2 M30L2_PROD_ID

MOD35_L2 M35L2_PROD_ID

MOD38_L2 M38L2_PROD_ID

1-km_Pixels_Per_Scan_Line MAPIXELS_PER_SCAN

1-km_Scan_Lines_Per_Granule MALINES_PER_GRANULE

GMT Time of observation in milliseconds MAGMT

Corner latitude of 10x10 pixel array MACORNER_LAT

Corner longitude of 10x10 pixel array MACORNER_LON

Scanline number through center of 5x5 pixel array MASCANLINE_NO

Frame number of center pixel in 5x5 array MAPIXEL_NO

Satellite zenith angle at midpoint of 5x5 array MAZENITH_SAT

Solar zenith angle at midpoint of 5x5 array MAZENITH_SOLAR

Index indicating the surface geography type as either
Water(0) or Land(1)

MAGEO_FLAG

Surface temperature at midpoint of 5x5 pixel array MATEMP_SFC

Surface pressure at midpoint of 5x5 pixel array MAPRES_SFC

Estimated tropopause height MATROPOPAUSE

long_name MALONG_NAME

sampling_factor" MASAMPLING

scale_factor MASCALE

add_offset MAOFFSET

units MAUNIT

valid_range MARANGE

Number Of Cells Across Swath MACELLS_ACROSS

Number Of Cells Along Swath MACELLS_ALONG

Pixels Per Scan Line MAPIXELS

Number of Scan Lines MASCANLINE

Number of Bands M04BANDS

Observed land reflectances averaged on 10x10 1-km
pixel array

M04LAND_REFLS

Land aerosol optical thickness (AOT) for continental
model

M04LAND_OPT_THICK

Standard deviation of observed land reflectances M04LAND_REFLS_DEV

Land AOT for corrected model M04LAND_OPT_THICK_COR

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 B-13

Metadata Name/Description Constant

Aerosol path radiance ratio (continental model) of red
to blue channel (band 3/band 1)

M04LAND_RADIANCE_RATIO

Relative contribution of smoke/sulfate particles to
dust in the computation of the aerosol optical depth

M04LAND_CONTRIBUTION

Number of Clear Land Pixels in Band 3 M04LAND_PIXELS_B3

Number of Clear Land Pixels in Band 1 M04LAND_PIXELS_B1

Identification of retrieval procedure M04LAND_PROC_ID

Aerosol type in one of four categories: continental,
dust, sulfate, and smoke

M04LAND_AERO_TYPE

Aerosol land error flag M04LAND_ERROR

Ocean AOT at 0.55 micron on 10x10 1-km pixel array M04OCEAN_OPT_THICK

Small-particle ocean AOT at 0.55 micron on 10x10 pixel
array

M04OCEAN_OPT_THICK_S

Large-particle ocean AOT at 0.55 micron on 10x10 pixel
array

M04OCEAN_OPT_THICK_L

Weight factor for combining large and small aerosol
modes during retrieval. This parameter minimizes the
least-squares error summed over spectral bands

M04OCEAN_ERROR

Solution number from 1 to 36 M04OCEAN_SOLUTION

Observed ocean reflectances averaged on 10x10 1-km
pixel array

M04OCEAN_REFLS

Look-Up Table of Aerosol Model Parameters and Values
Vdata

M04AEROSOL_LUT

small mode aerosol mean radius M04LUT_RGSS

large mode aerosol mean radius M04LUT_RGSB

standard deviation of small mode radius M04LUT_SIGMAS

standard deviation of large mode radius M04LUT_SIGMAB

CCN M04LUT_CCNS

small mode extinction coefficient for 5 wavelengths M04LUT_EXTS

large mode extinction coefficient for 5 wavelengths M04LUT_EXTB

moments order 1-4 of small mode particle radius M04LUT_MOMENTS

moments order 1-4 of large mode particle radius M04LUT_MOMENTB

small mode backscatter ratio for 5 wavelengths M04LUT_BACKSCTS

large mode backscatter ratio for 5 wavelengths M04LUT_BACKSCTB

small mode asymmetry factor for 5 wavelengths M04LUT_ASSYMS

large mode asymmetry factor for 5 wavelengths M04LUT_ASSYMB

small mode albedo for 5 wavelengths M04LUT_ALBEDOS

large mode albedo for 5 wavelengths M04LUT_ALBEDOB

Total column water vapor amounts over clear land, and
cloud scenes over land and ocean

M05WATER_VAPOR

Index indicating cloud(0), no cloud(1), or cloud/no
cloud determination not made(-1)

M05CLOUD_QUAL

Number_Of_1-km_Bands M06BANDS

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 B-14

Metadata Name/Description Constant

Number of Channel Indices M06CHANNEL_IND

Number of Channel Differences M06CHANNEL_DIFF

Brightness temperatures for IR channels 27 - 36 at 5x5
1-km pixel resolution

M06BRIGHT_TEMP

Sufficient number of cloudy pixels (0) or too few
cloudy pixels (1) to be able to process 5x5 pixel
array

M06PROCESS_FLAG

Spectral cloud forcing for IR channels 29, and 31 - 36 M06CLOUD_FORCING

value to indicate the method of cloud height
determination

M06METHOD

Cloud top effective emissivity M06EMISSIVITY_CT

Cloud top pressure M06PRES_CT

Cloud top temperature M06TEMP_CT

Cloud fraction at 5x5 1-km pixel resolution M06FRACTION

Separate cloud top pressure estimates from five
radiances ratios

M06PRES_CT_RATIO

Cloud top pressure from IR window M06PRES_CT_IR

Surface type index M06SFC_TYPE

Radiance variance for channels 29, 31, and 32 M06RADIANCE

Brightness temperature differences between IR channels
29, 31, and 32

M06BRIGHT_TEMP_DIFF

Cloud thermodynamic phase derived from infrared
retrieval algorithm

M06PHASE_IR

Effective particle radius at 1-km resolution M06EFF_RADIUS

Cloud optical thickness at 1-km pixel resolution M06CLOUD_OPT_THICK

Cloud thermodynamic phase derived from visible/SW
infrared retrieval algorithm

M06PHASE_VIS

Statistics at 1-km pixel resolution M06STATISTICS

Total Colume Ozone at 5x5 1-km pixel resolution M07TOTAL_OZONE

Total Totals Atmospheric Stability Index M08TOTALS

Lifted Index Atmospheric Stability Index M08LIFTED_INDEX

K Index Atmospheric Stability Index M08K_INDEX

Number Of Channels M30CHANNELS

Brightness temperatures for IR channels 20, 22-25, and
27-36

M30BRIGHT_TEMP

Guess temperature profile for 20 vertical levels M30TEMP_PROF

Guess dewpoint temperature profile for 15 vertical
levels

M30DEWP_TEMP_PROF

Rretrieved temperature profile for 20 vertical levels M30RETR_TEMP_PROF

Rretrieved dewpoint temperature profile for 15
vertical levels

M30RETR_DEWP_TEMP_PROF

Index of pressure levels for the 15 vertical levels M30PRESS_LEVEL

Bit field mask containing the results of visible and
infrared radiance cloud/no cloud tests

M35CLOUD_MASK

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 B-15

Metadata Name/Description Constant

Cell Frame Number M38CELL_FRAME

Cell Line Number M38CELL_LINE

Atmospheric Water Vapor Parameter at 5x5 1-km pixel
resolution

M38WATER_VAPOR

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 B-16

Table B-6 Ocean Macros

Metadata Name/Description M-API Constant

MOD27 HDF output file M27_PROD_ID

output_file_name M27O_F_NAME

output_file_logical file number M27O_F_L_F_NUM

units_of_output_file_logical_file_number U_O_O_F_L_F_NUM

product_name M27P_NAME

statistics_file_name M27S_F_NAME

product_sum_total_over_all_regions M27P_SUM

units_of_product_sum_total_over_all_regions M27U_O_P_SUM

product_variance_total_over_all_regions M27P_VAR

units_of_product_variance_total_over_all_regions M27P_O_P_VAR

product_area_total_over_all_regions M27P_AREA

units_of_product_area_total_over_all_regions M27U_O_P_AREA

square km M27SQKM

number_of_regions_for_product M27P_NREGS

coordinate_system M27COORD_SYS

units_of_coordinate_system M27U_O_COORD_SYS

range_of_coordinate_system M27R_O_COORD_SYS

character_counter M27KCHAR

region_counter M27JREG

limit_of_region_counter M27KLIM

function_order_counter M27KORD

product_cell_counter M27KCELLS

name_of_regions M27NAME_R

limit_of_regions-deg_lat_and_deg_long M27LIM_R

area_of_regions-km_squared M27AREA_R

independent_variables_of_regions M27IV_R

functions_used_in_regions M27FUNCTIONS_R

order_of_functions_used_in_regions M27ORD_R

coefficients_used_in_regions M27COEFF_R

error_in_regions-gr_per_m3_per year M27ERR_R

sum_in_regions-gr_per_m3_per_year M27SUM_R

variance_in_regions-gr2_per_m6_per_year2 M27VAR_R

product_y-gr_per_m3_per_year M27P_Y

product_error_ey-gr_per_m3_per_year M27P_EY

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 B-17

Table B-7 Land Macros

Metadata Name/Description M-API Constant

Pixels_per_scan_line MLPIXELS_PER_SCAN

Number_of_scan_lines MLNUMBER_OF_LINES

Pixels_per_line MLPIXELS_PER_LINE

Lines_per_tile MLLINES_PER_TILE

Total_observations MLTOTAL_OBSERVATIONS

Num_parameters MLNUMBER_OF_PARAMS

Maximum_observations MLMAX_OBSERVATIONS

Number_of_granules MLNUMBER_OF_GRANULES

Granule_IDs MLGRANULE_IDS

File_Format MLFILE_FORMAT

Parameter1 MLPARM1

Parameter2 MLPARM2

Parameter3 MLPARM3

Parameter4 MLPARM4

Parameter5 MLPARM5

Parameter6 MLPARM6

Parameter7 MLPARM7

Year MLYEAR

Day_of_year MLDOY

nrow MLNUMBER_OF_ROWS

nest_lev MLNEST_LEVEL

ref_lon_in_deg MLREF_LONGITUDE

ang_size_in_arcsec MLANGULAR_SIZE

irow_start MLIROW_START

ncol_max MLNCOL_MAX

itile_horiz MLITILE_HORIZ

itile_vert MLITILE_VERT

ntile_horiz MLNTILE_HORIZ

ntile_vert MLNTILE_VERT

L2G number of observations per pixel contained within
L2G file

MLNUMBER_OF_OBS

The number of columns in the full ISCCP grid for each
row (line) contained within the L2G file

MLNUMBER_OF_COLS

The start column in the full ISCCP grid for each row
(line) contained within the L2G file (starting at
zero).

MLSTART_COLUMN

The number of columns in each row (line) contained
within the L2G file.

MLCOLS_PER_ROW

The start pixel of the first valid column in each row
(line) contained within the L2G file (starting at
zero).

MLSTART_PIX

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 B-18

Metadata Name/Description M-API Constant

Number of observations per line MLOBS_PER_LINE

SPSO_parameter MLSPSO_PARAMETERS

Product type identifier: MOD09_ANG_L2G_1KM M09ANG_PROD_ID

Zenith angle to sensor M09SENSOR_ZENITH

Azimuth angle to sensor M09SENSOR_AZIMUTH

Distance to sensor M09SENSOR_DISTANCE

Zenith angle to sun M09SOLAR_ZENITH

Azimuth angle to sun M09SOLAR_AZIMUTH

Product type identifier: MOD09_PNT_L2G_1KM M09PNT1K_PROD_ID

Product type identifier: MOD09_PNT_L2G_500M M09PNT500_PROD_ID

Product type identifier: MOD09_PNT_L2G_250M i M09PNT250_PROD_ID

Pointer to granule IDs from which the observation
came. Zero relative. Fill value is 255.

M09GRANULE_PNT

Sample number of observation (1 km spatial element)
in granule

M09OBS_IN_GRANULE

Sub-pixel (delta) line location of cell center in
observation footprint. Relative to center of
observation specified by (line, sample).

M09CELL_CENTER

Sub-pixel (delta) line location of cell center in
observation footprint SDS. Relative to center of
observation specified by (line, sample).

M09SAMPLE_CENTER

Observation coverage SDS: area of intersection
between observation footprint and cell divided by
area of observation.

M09OBS_COVERAGE

Cell coverage SDS: area of intersection between
observation footprint and cell divided by area of
cell.

M09CELL_COVERAGE

Product type identifier: MOD09_L2 and MOD13_L2 MOD09_L2G_500M
M09_L2G_500M_PROD_ID

Surface Reflectance for MODIS Band 3 M09BAND3_SURF_REFL

Surface Reflectance for MODIS Band 4 M09BAND4_SURF_REFL

Surface Reflectance for MODIS Band 5 M09BAND5_SURF_REFL

Surface Reflectance for MODIS Band 6 M09BAND6_SURF_REFL

Surface Reflectance for MODIS Band 7 M09BAND7_SURF_REFL

Indicators of the quality of the 500 m reflectance
data

M09QUALITY_500

Product type identifier: MOD09_L2 and MOD13_L2 M09_L2G_250M_PROD_ID

Surface Reflectance for MODIS Band 1 M09BAND1_SURF_REFL

Surface Reflectance for MODIS Band 2 M09BAND2_SURF_REFL

Indicators of the quality of the 250 m reflectance
and VI data integrity.

M09QUALITY_250

Product type identifier: MOD09_L2 and MOD13_L2
MOD09SUBS_L2G_16DY

M09_REFLDB_PROD_ID

ang_size (in arcsec) M09_REFLDB_ANGULAR_SIZE

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 B-19

Metadata Name/Description M-API Constant

General information on observational basis
M09_OBS_INFO words

M09_OBS_INFO_WORDS

Viewing and illumination angles M09_ANGLES

N_obs_dy M09_ANGLES_OBS

N_angles M09_ANGLES_NUM

Surface reflectances M09_REFLDB_SURF_REFL

N_obs_dy M09_SURF_REFL_OBS

N_bands M09_SURF_REFL_BANDS

Quality and weights of the respective observations M09_QUALITY_WEIGHTS

N_obs_dy M09_QUALITY_OBS

words M09_QUALITY_WORDS

Product type identifier: MOD09_BARS M09BARS_PROD_ID

Nadir-equivalent surface reflectances for MODIS bands
1-7

M09BARS

Overall quality of the BRDF-adjusted surface
reflectances

M09BARS_QC

The number of columns in the full ISCCP grid for each
row (line) contained within this L2G file.

M09NCOL

The start column in the full ISCCP grid for each row
(line) contained within this L2G file (starting at
zero).

M09ICOL_START

The number of columns in each row (line) contained
within this L2G file.

M09NCOL_TILE

The start pixel of the first valid column in each row
(line) contained within this L2G file (starting at
zero).

M09IPIX_START

Product type identifier: MOD09_L3_16DY_G M09_L3_PROD_ID

Identifier for BRDF models chosen M09BRDF_MODEL_ID

RMSE for BRDF models chosen M09BRDF_MODEL_RMSE

BRDF quality control M09QUALITY

BRDF parameters for the seven land bands M09BRDF_PARAMETERS

Albedo parameters for broadband, < 0.7 mu-m, > 0.7
mu-m, and the seven land bands.

M09ALBEDO

A neasure of fit from RMSE and sampling of all models
tested.

M09FIT_ASSESS

The number of columns in the full ISCCP grid for each
row (line) contained within this L3 file.

M09NCOL

The start column in the full ISCCP frid for each row
(line) contained within this L3 file (starting at
zero).

M09ICOL_START

The number of columns in each row (line) contained
within this L3 file.

M09NCOL_TILE

The start pixel of the first valid column in each row
(line) contained within this L3 file (starting at
zero).

M09IPIX_START

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 B-20

Metadata Name/Description M-API Constant

N_select_models M09N_SELECT_MODELS

words M09WORDS

land_bands M09LAND_BANDS

number_parameters M09NUMBER_PARAMETERS

land_bands_and_broadband_and_<>_0.7mu-m M09LANDBANDS_BROADBAND_
OTHER

N_models M09N_MODELS

Product type identifier: MOD09_L2 and MOD13_L2 M0913_L2_PROD_ID

SurfaceReflectance for MODIS Band 1 SDS M0913BAND1_SURF_REFL

SurfaceReflectance for MODIS Band 2 SDS M0913BAND2_SURF_REFL

SurfaceReflectance for MODIS Band 3 SDS M0913BAND3_SURF_REFL

SurfaceReflectance for MODIS Band 4 SDS M0913BAND4_SURF_REFL

SurfaceReflectance for MODIS Band 5 SDS M0913BAND5_SURF_REFL

SurfaceReflectance for MODIS Band 6 SDS M0913BAND6_SURF_REFL

SurfaceReflectance for MODIS Band 7 SDS M0913BAND7_SURF_REFL

NDVI index at 250m M0913_NDVI_INDEX

MVI index at 250m M0913_MVI_INDEX

Indicators of the quality of the 250m reflectance and
VI data integrity.

M0913QUALITY_250

Indicators of the quality of the 500m reflectance and
VI data integrity.

M0913QUALITY_50

num_detectors M0913NUM_DETECTORS

sampling M0913SAMPLING

Number_of_pixels_processed M10PROCESSED_PIXELS

Total_snow_pixels M10SNOW_PIXELS

Percentage_snow M10PERCENT_SNOW

Percentage_not_snow M10PERCENT_NOT_SNOW

Above_range_NDSI M10NDSI_ABOVE

Below_range_NDSI M10NDSI_BELOW

Division_by_zero M10ZERO_DIVIDE

Out_of_range_input M10OUT_OF_RANGE_INPUT

No_decision M10NO_DECISION

L2/L2G Identification of daily snow cover on the land
surface

M10DAILY_SNOW

Product type identifier: MOD10_L2G M10L2G_PROD_ID

Product type identifier: MOD10_L3_DY_G M10L3_PROD_ID

L3 Identification of daily snow cover on the land
surface

M10GRIDDED_SNOW

Product type identifier: MOD11_L2 M11L2_PROD_ID

L2/L2G Identification of Land Surface Temperature M11SURF_TEMP

L2/L2G LST Quality Indicator M11QUALITY

L2/L2G Error in land surface temperature measurements M11ERRORS

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 B-21

Metadata Name/Description M-API Constant

L2/L2G/L3 Band 31 emissivity M11BAND31_EMIS

L2/L2G/L3 Band 32 emissivity M11BAND32_EMIS

L2/L2G Band 29 or band 20 emissivity M11BAND29OR20_EMIS

Product type identifier: MOD11_L2G M11L2G_PROD_ID

Product type identifier: MOD11_L3_WK_G M11L3_PROD_ID

L3 Identification of Land Surface Temperature M11L3SURF_TEMP

Land surface temperature in view within 45deg M11NARROW_LST

L3 LST Quality Indicator M11L3QUALITY

Land-Surface Temperature Standard Deviation M11STD_DEV

L3 Band 29 or band 20 emissivity M11L3BAND29OR20_EMIS

Angular coefficients for Band 31 emissivity M11BAND31_ANG_COEFS

Angular coefficients for Band 32 emissivity M11BAND32_ANG_COEFS

Product type identifier:
MOD12_L3_3MN_D/MOD12_L3_3MN_F

M12L3_PROD_ID

ang_size (in arcsec) M12ANGULAR_SIZE

Identification of land cover type M12LAND_COVER

Identification of Overall quality of the land cover M12QUALITY

Identification of Number of products generated since
last classification update

M12PRODS_GENERATED

Identification of Number of snow months over pervious
12 months

M12SNOW_MONTHS

Identification of Number of BRDFs used for
classification that have been derived within the pass
12 month

M12BRDFS_USED

Identification of Confidence in BRDF/reflectance
correction

M12BRDF_STOCK

Identification of Number of LST values used for
classification

M12LST_VALS_USED

Identification of Confidence in VI over 12 months M12VI_STOCK

Identification of TBD quality control for land cover
type

M12QUALITY1

Identification of TBD quality control for land cover
type

M12QUALITY2

Identification of Land cover change M12LAND_COVER_CHANGE

Identification of Quality control for land cover
change

M12CHANGE_QUALITY

Product type identifier: MOD14_L2 M14L2_PROD_ID

L2/L2G Identification of fire on the land surface M14LAND_FIRE

L2/L2G/L3 Total emmitted energy detected M14ENERGY

L2/L2G/L3 Class of fire detected M14FIRE_CLASS

Fire quality control M14QUALITY

Product type identifier: MOD14_L2G M14L2G_PROD_ID

L2G/L3 Fire quality control M14L2GQUALITY

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 B-22

Metadata Name/Description M-API Constant

Product type identifier: MOD14_L3 M14L3_PROD_ID

Product type identifier: MOD29_L2 M29L2_PROD_ID

Total_sea_ice_pixels M29SEA_ICE_PIXELS

Percentage_sea_ice M29SEA_ICE_PERCENT

Percentage_not_sea_ice M29NOT_SEA_ICE_PERCENT

Above_range_NDSI M29NDSI_ABOVE

Below_range_NDSI M29NDSI_BELOW

Division_by_zero M29ZERO_DIVIDE

Out_of_range_input M29OUT_OF_RANGE

No_decision M29NO_DECISION

Identification of daily sea ice cover M29DAILY_SEA_ICE

Product type identifier: MOD29_L2G M29L2G_PROD_ID

Daily Ice Cover M29L2GDAILY_SEA_ICE

Product type identifier: MOD29_L3_DY_G M29L3_PROD_ID

Identification of daily sea ice cover M29L3DAILY_SEA_ICE

Product type identifier: MOD33_L3_WK_G M33L3_PROD_ID

Weekly Snow Cover M33WEEKLY_SNOW

Product type identifier: MOD34_L3_MN M34L3_PROD_ID

NDVI M34NDVI

MVI M34MVI

View zenith angles for NDVI M34NDVI_ZENITH_ANGLES

View zenith angles for MVI M34MVI_ZENITH_ANGLES

Quality control for NDVI M34NDVI_QUALITY

Quality control for MVI M34MVI_QUALITY

Product type identifier: MOD42_L3_WK_G M42L3_PROD_ID

Weekly Sea Ice Cover M42WEEKLY_SEA_ICE

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 C-1

APPENDIX C: DESCRIPTIONS AND PURPOSES

Appendix C shows the descriptions and purposes for both the C and FORTRAN
routines. For a description of the variables refer to Appendix D and for a description of
the associated error messages see Appendix E.

C.1 Descriptions and Purposes of C Routines

int closeMODISfile (MODFILE **file)

closeMODISfile terminates the access of M-API routines to a MODIS HDF file opened using
openMODISfile . Only pre-existing files should be closed by closeMODISfile.
completeMODISfile should be used to end access to a new MODIS HDF file so that the file’s
header information can be completed. closeMODISfile may fail to close the file if an error
occurs.

int completeMODISfile (MODFILE **file, PGSt_MET_all_handles mdHandles,
ECSattr_names_for_all_handles HDFattrNames, long
int NumHandles)

completeMODISfile terminates the access of M-API routines to a MODIS HDF file opened
using openMODISfile . In addition to closing the file, the file's standard header information is
inserted. A pre-existing MODIS-HDF file should be closed by closeMODISfileor some of its
header information will be over-written. completeMODISfile may fail to close the file if an error
occurs.

See Chapter 4.5, Accessing Metadata, for a complete list of metadata completeMODISfile
writes to the MODIS-HDF file before closing it.

int createMODISarray (MODFILE *file, char *arrayname, char *groupname,
char *data_type, long int rank,
long int dimsizes[])

createMODISarray creates an HDF SDS structure to store a new data array into a MODIS HDF
file. It must be called before the data may be written to the file using putMODISarray or the
attributes associated with the array may (optionally) be stored using PMARIN and PMDMIN.

The groupname string provides the facility to place the new array in an HDF ‘Vgroup’ data group.
If a Vgroup with the name groupname does not exist, the array structure will not be created. The
array may be placed in the file outside of any Vgroup by replacing groupname with NULL in C.

If an array with the name arrayname is written outside of a Vgroup, it must not already exist in the
file. This is to prevent the confusion caused by multiple data objects with the same name. Arrays
with the same name may be stored in the same file, however, if they are placed in separate
Vgroups.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 C-2

int createMODISgroup (MODFILE *file, char *groupname, char *classname)

createMODISgroup creates an HDF Vgroup structure in a MODIS HDF file to store table and
array structures. It must be called before any of the data objects to be aggregated in it are
created. The use of data groups is optional, but data objects stored in them are documented in
the MODIS Product File Definitions in Appendix F. A data group with the name groupname must
be unique in a file. This prevents confusion that is caused by multiple data groups with the same
name.

int createMODIStable (MODFILE *file, char *tablename, char *classname,
char *groupname, char*fieldname, char*data_type)

createMODIStable creates an HDF Vdata structure in a MODIS HDF file to store a new data
table. It must be called before the data may be written to the file using putMODIStable. The
text headers for each field (column) and the data type stored in each field must be provided.

The groupname string provides the facility to place the new table in an HDF ‘Vgroup’ data group.
If a Vgroup with the name groupname does not exist, the table structure will not be created. The
table may be placed in the file outside of any Vgroup by setting groupname = NULL in C.

If a table with the name tablename is created outside of a Vgroup, it must not already exist in the
file. This is to prevent the confusion caused by multiple data objects with the same name. Tables
with the same name may be stored in the same file, however, if they are placed in separate
Vgroups.

int getMODISardims (MODFILE *file, char *arrayname, char *groupname,
char *data_type, long int *rank, long int dimsizes[])

getMODISardims retrieves the essential characteristics of an HDF SDS array structure
contained in a MODIS HDF file. This provides the information needed for properly reading data
from the array structure using getMODISarray.

The groupname string provides the facility to select an array structure placed in a particular HDF
‘Vgroup’ data group. Alternatively , the entire file will be searched for an array structure named
arrayname if groupname = NULL in C.

Proper dimensioning of dimsizes to provide sufficient elements for the dimensions of the array
structure may at first appear to require precognition. The easiest solution is to provide a
generous (32 element) dimsizes array. Another approach is to use the rank variable as an input
containing the number of elements in dimsizes. If dimsizes is inadequate for the multi-
dimensional array structure in question, getMODISardims will fail gracefully but will return the
rank of the array structure, allowing for the dimension information to be retrieved with a second
call.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 C-3

int getMODISarinfo (MODFILE *file, char *arrayname, char *groupname, char
*attribute, char *data_type, long int *n_elements,
void *value)

getMODISarinfo retrieves the value stored in an HDF local attribute associated with an array
structure given the attribute name. If the attribute cannot be found, the routine will return MFAIL
(-1) .

The routine will also fail if the provided data_type is found to be different than the metadata’s data
type or the n_elements is found to be too small to contain the number of metadata values.
getMODISarinfo replaces this input information with the actual data type and number of elements
contained in the metadata value (in the case of character data, it is the length of the string,
including the ‘\0’ terminator). The retrieved data type and attribute array size information may
then be used to properly retrieve the array structure metadata with a second call to the routine.
Since data_type and n_elements are used to output information, these arguments may not be
pointers to constants. GMARIN behaves similarly, so the arguments nelmnt and dtype must not
be FORTRAN parameters or constants either.

n_elements, the address of the number of elements in the provided output value array, is a
required input if the metadata are to be retrieved. getMODISarinfo normally replaces this input
with the actual array length required to hold this metadata. If the local attribute is not found or an
HDF routine fails, however, *n_elements is set to 0.

A variable of the proper data type and length should be passed for the value argument. The data
type information required to properly use this routine may be found in Appendix F, Modis Data
Product File Definitions.

The groupname string provides the facility to select an array structure placed in a particular HDF
‘Vgroup’ data group. Alternatively , the entire file will be searched for an array structure named
arrayname if the argumentgroupname = NULL in C.

int getMODISarray (MODFILE *file, char *arrayname, char *groupname, long
int start[], long int, dimsizes[], void *data)

getMODISarray returns a multi-dimensional array of data from an HDF SDS array structure
contained in a MODIS HDF file. The data array must be of the same data type as data in the target
array structure. In addition, the dimensions and array region requested from the array structure
must be consistent with the structure’s rank and dimensions. (The array structure’s data type,
rank, and dimensions may be retrieved using getMODISardims. If a getMODISarray error
message occurs the data retrieval will not be performed. See Section 4.3, “Accessing Arrays” for
additional information.

The groupname string provides the facility to select an array structure placed in a particular HDF
‘Vgroup’ data group. Alternatively , the entire file will be searched for an array structure named
arrayname if groupname = NULL in C.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 C-4

int getMODISdiminfo (MODFILE *file, char *arrayname, char *groupname, long
int dimension, char *attribute, char *data_type,
long int *n_elements, void *value)

getMODISdiminfo retrieves the value stored in an HDF local attribute associated with an array
structure’s dimension given the attribute name. If the attribute cannot be found, the routine will
return MFAIL (-1) .

The routine will also fail if the provided data_type is found to be different than the metadata’s
data type or the n_elements is found to be too small to contain the number of metadata values.
getMODISdiminfo replaces this input information with the actual data type and number of
elements contained in the metadata value (in the case of character data, it is the length of the
string, including the ‘\0’ terminator). The retrieved data type and attribute array size information
may then be used to properly retrieve the array structure metadata with a second call to the
routine. Since data_type and n_elements are used to output information, these arguments may
 not be pointers to constants. GMDMIN behaves similarly, so the arguments nelmnt and dtype
must not be FORTRAN parameters or constants either.

n_elements, the address of the number of elements in the provided output value array, is a
required input if the metadata are to be retrieved. getMODISdiminfo normally replaces this
input with the actual array length required to hold this metadata. If the local attribute is not found
or an HDF routine fails, however, *n_elements is set to 0.

A variable of the proper data type should be passed for the value argument. The data type
information required to properly use either routine may be found in Appendix F, Modis Data
Product File Definitions.

The groupname string provides the facility to select an array structure placed in a particular HDF
‘Vgroup’ data group. Alternatively , the entire file will be searched for an array structure named
arrayname if the argumentgroupname = NULL in C.

int getMODISECSinfo (MODFILE *file, char *PVLAttrName, char *parmName,
char *data_type, long int *n_elements, void *value)

getMODISECSinfo is part of a larger software system called the MODIS Applications
Programming Interface (API) Utility, abbreviated M-API. The M-API Utility consists of subroutines
which allow MODIS Science Team-supplied software to read and write data and metadata from/to
HDF files. The functionality of the M-API is defined in the MODIS Application Program Interface
(API) Specification.

In HDF-EOS, parameters are collected together to form a text block using PVL. Then the text
block is stored in HDF as a single attribute. getMODISECSinfo retrieve the value of a
parameter from the PVL text block.

In order to obtain value of a parameter inside a PVL text block, the function reads the PVL text
block specified by PVLAttrName from the MODIS file, creates the internal ODL tree structure
from the PVL text block, and search the tree structure to retrieve the value of a parameter. The
tree structure is then saved internally for consecutive searches in the same PVL text block for
code efficiency. If multiple parameters will be retrieved from the same PVL block, just set
PVLAttrName to the HDF PVL attribute name in the first call and set to NULL in C and ‘ ’ in
FORTRAN in the consecutive calls. If the next call is to retrieve the value of a parameter in a
different PVL text block, set the PVLAttrName to the new PVL attribute name. The saved old
tree structure will be deleted automatically and a new ODL tree will be created and saved. If you
will no longer call getMODISECSinfo in your program and want to release the memory occupied
by the saved tree, just set both PVLAttrName and parmName to NULL in C.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 C-5

int getMODISfields (MODFILE *file, char *tablename, char *groupname, long
int *stringlen, long int *recno, long int *fieldno,
char *fieldname, char *data_type, char *classname)

getMODISfields retrieves the essential characteristics of an HDF Vdata table structure
contained in a MODIS-HDF file. This provides the information needed for properly reading data
from the table structure using getMODIStable or to write to it using putMODIStable. If any
of the output parameters are set to NULL, then that data are not retrieved. An error (MFAIL) will
be returned if 1) The output strings are not long enough to contain the data type or field name
strings for all the Vdata's fields, 2) an unknown (e.g., not supported by the MODIS API) number
type is encountered or 3) an HDF routine FAILs. The data type string (if requested) will be
returned truncated to the point where the fault occurred.

stringlen, the address of the length of the data_type and fieldname output strings, is a required
input if either of these strings is to be retrieved. getMODISfields normally replaces this input with
the actual array length required to hold the larger ot the two output strings. If an unknown data
type or an HDF routine fails, however, *stringlen is set to 0.

The groupname string provides the facility to select a table structure existing in a particular HDF
‘Vgroup’ data group. Alternatively , the entire file will be searched for a table structure named
tablename if groupname = NULL in C.

int getMODISfileinfo (MODFILE *file, char *attribute, char *data_type,
long int *n_elements, void *value)

getMODISfileinfo retrieves the value associated with an attribute = value metadata pair given
the attribute name. If the attribute cannot be found, the routine will return -1 and the passed
variable unchanged.

The routine will also fail if the provided data_type is found to be different than the metadata’s
data type or the n_elements is found to be too small to contain the metadata’s value.
getMODISfileinfo replaces this input information with the actual data type and number of
elements contained in the metadata value (in the case of character data, it is the length of the
string). These metadata metadata may be used to properly retrieve the metadata value with a
second call to the routine.

A variable of the proper data type should be passed for the value parameter. The data type
information required to properly use either routine may be found in Appendix B, M-API-Supplied
Constants, and Appendix F, MODIS Data Product File Definitions. Appendix B has a listing for
each M-API provided metadata attribute that includes the data type, the format, and/or specific
values associated with it.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 C-6

int getMODIStable (MODFILE *file, char *tablename, char *groupname,
char*fieldname, long int start, long int recno, long int
*buffsize, unsigned char *data)

getMODIStable retrieves one or more fields of data from one or more records in an HDF Vdata
table structure contained in a MODIS-HDF file. The data are placed in the data buffer in
consecutive records and in the order that the input fieldnames are listed. The length of this
buffer must be able to contain all the fields requested times the number of records requested. If
the buffsize input indicates that it is too small to contain the actual quantity of data requested,
getMODIStable will fail, but it will return the actual buffsize required. The output data buffer
must be at least this size. See Section 4.4, “Accessing Tables” for additional information.

The groupname string provides the facility to select a table structure placed in a particular HDF
‘Vgroup’ data group. Alternatively , the entire file will be searched for a table structure named
tablename if groupname = NULL in C.

int putMODISarinfo (MODFILE *file, char *arrayname, char *groupname, char
*attribute, char *data_type, long int n_elements, void
*value)

putMODISarinfo attachs a local metadata attribute/value pair to a MODIS array.
putMODISarinfo stores an attribute = value(s) metadata pair to the indicated array. If the
attribute already exists, the value(s) will be updated.

int putMODISarray (MODFILE *file, char *arrayname, char *groupname, long
int start[], long int, dimsizes[], void*data)

putMODISarray places a multi-dimensional array of data into an HDF SDS array structure
previously created using createMODISarray. The data in the array must be of the data type
the target array structure was created for. In addition, the dimensions and placement of the input
array in the array structure must be consistent with the structure’s rank and dimensions. If a
putMODISarray error message occurs, the data insertion will not be performed. See Section
4.3, “Accessing Arrays” for additional information. This routine may be called multiple times to fill
the array structure. Data previously in the array structure may be overwritten.

The groupname string provides the facility to select an array structure placed in a particular HDF
‘Vgroup’ data group. The entire file will be searched for an array structure named arrayname if
groupname = NULL in C.

int putMODISdiminfo (MODFILE *file, char *arrayname, char *groupname, long
int dimension, char *attribute, char *data_type, long
int n_elements, void *value)

putMODISdiminfo attachs a local attribute/value pair to a specific dimension of a MODIS array.
putMODISdiminfo stores an attribute = value(s) attribute pair to the indicated dimension of a
MODIS array. If the attribute already exists, the value(s) will be updated.

The groupname string provides the facility to select an array structure placed in a particular HDF
‘Vgroup’ data group. Alternatively , the entire file will be searched for an array structure named
arrayname if groupname = NULL in C and a blank string (“ “) in FORTRAN.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 C-7

int putMODISfileinfo (MODFILE *file, char *attribute, char *data_type,
long int n_elements, void * value)

putMODISfileinfo stores an attribute = value metadata pair to the indicated MODIS HDF file. If
the attribute already exists, the value will be updated.

File attributes should be limited to M-API provided attribute macros. (See Section 5, M-API-
Supplied Constants and Naming Conventions.) The data type should also be limited to the type
associated with the MODIS file attribute, and the value itself restricted to that data type and the
format and/or specific values associated with the attribute.

int putMODIStable (MODFILE *file, char *tablename, char *groupname, long
int start, long int recno, unsigned char *data)

putMODIStable places one or more data records into an HDF Vdata table structure previously
created using createMODIStable. The data to be inserted into the table must be placed into
a data array. The length of this array must be an integral number of the table structure's record
length. The various data that make up a record should be inserted into the buffer in the same
order as the field headers were ordered in the createMODIStable call. See Section 4.4,
“Accessing Tables” for additional information. This routine may be called multiple times to fill the
table structure. Data previously in the table structure may be overwritten.

The groupname string provides the facility to select a table structure placed in a particular HDF
‘Vgroup’ data group. The entire file will be searched for a table structure named tablename if
groupname = NULL in.

int substrMODISECSinfo (char *char_value, long int n_elements, long int
*n_strings, char *substr[])

ECS metadata values may be integer, floating point, or character string values or arrays of values.
Some may be multiple strings. The routine getMODISECSinfo retrieves such strings into a
one-dimension character array with the individual strings separated by nulls (‘\0’).
substrMODISECSinfo breaks this ‘packed’ character array into its constituent substrings.
substrMODISECSinfo sets the pointers in a provided output array to the beginning of each
substring in the char_value array.

int32 searchMODISgroup (MODFILE *file, char *groupname, char *classname,
char *objectname, char *objectclass, int32
objecttype)

searchMODISgroup searches an HDF Vgroup structure in a MODIS HDF file to find if an HDF
object is in the Vgroup. Both the group and the object are specified by their name and class
name. However, the classname is an optional feature. If class names are set to NULL, only name
comparison is performed. Because SDS (array) has no class name, the objectclass for an SDS is
always ignored. If the specified object exists, the function will return the reference id for Vdata
and Vgroup, and index for SDS. If the object does not exist, the function will return
NO_OBJECT, which is defined in mapic.h as -2.

The groupname string provides the facility to select an array structure placed in a particular HDF
‘Vgroup’ data group. Alternatively , the entire file will be searched for an array structure named
arrayname if groupname = NULL in C and a blank string (“ “) in FORTRAN.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 C-8

long int MODISsizeof (char *data_type)

The M-API uses a set of standard strings to describe the data types in stored in array and table
structures. These strings are returned, for example, by the routine getMODISardims to
describe the data type of the target array structure. MODISsizeof returns the number of bytes
required to store a data type given this data type string. The input string may be a series of
comma-delimited data type strings, in which case the total number of bytes to store the record
described by the string is returned.

MODFILE * openMODISfile (char *filename, char *access)

openMODISfile opens an HDF file and creates the HDF structures to support the M-API
routines access to it. openMODISfile must be called to produce the MODFILE structure before
any of these routine can access it. Note that setting the file access to “w” creates a file and will
overwrite a pre-existing one. Will close the file and return null outputs if an error occurs.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 C-9

C.2 Descriptions and Purposes of FORTRAN Routines

INTEGER FUNCTION CLMFIL (modfil)

CLMFIL terminates the access of M-API routines to a MODIS HDF file opened using OPMFIL .
Only pre-existing files should be closed by closeMODISfile. CPMFIL should be used to end
access to a new MODIS HDF file so that the file’s header information can be completed. CLMFIL
may fail to close the file if an error occurs.

INTEGER FUNCTION CPMFIL (modfil, mdhandle, hdfattrnms, numhands)

CPMFIL terminates the access of M-API routines to a MODIS HDF file created using OPMFIL .
In addition to closing the file, the MODIS file’s standard header information is inserted. A pre-
existing MODIS HDF file should be closed by CLMFIL or some of its header information will be
overwritten. CLMFIL may fail to close the file if an error occurs.

See Section 4.5, Accessing Metadata, for a complete list of metadata completeMODISfile writes
to the MODIS HDF file before closing it.

INTEGER FUNCTION CRMAR (modfil, arrnm, grpnm, dtype, rank, dims)

CRMAR creates an HDF SDS structure to store a new data array into a MODIS HDF file. It must
be called before the data may be written to the file using PMAR or the attributes associated with
the array may (optionally) be stored using PMARIN and PMDMIN.

The grpnm string provides the facility to place the new array in an HDF ‘Vgroup’ data group. If a
Vgroup with the name groupname does not exist, the array structure will not be created. The
array may be placed in the file outside of any Vgroup by replacing grpnm = a blank string (‘ ’) in
FORTRAN.

If an array with the name arrnm is written outside of a Vgroup, it must not already exist in the file.
This is to prevent the confusion caused by multiple data objects with the same name. Arrays with
the same name may be stored in the same file, however, if they are placed in separate Vgroups.

INTEGER FUNCTION CRMGRP (modfil, grpnm, clsnm)

CRMGRP is part of a larger software system called the MODIS Applications Programming
Interface (API) Utility, abbreviated M-API. The M-API Utility consists of subroutines which allow
MODIS Science Team-supplied software to read and write data and metadata from/to HDF files.
The functionality of the M-API is defined in the M-API Specification.

CRMGRP creates an HDF Vgroup structure in a MODIS HDF file to store table and array
structures. It must be called before any of the data objects to be aggregated in it are created.
The use of data groups is optional, but data objects stored in them are documented in the
MODIS Product File Definitions in Appendix F. A data group with the name grpnm must be
unique in a file. This prevents confusion that is caused by multiple data groups with the same
name.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 C-10

INTEGER FUNCTION CRMTBL (modfil, tblnm, clsnm, grpnm, fldnm, dtype)

CRMTBL creates an HDF Vdata structure in a MODIS HDF file to store a new data table. It must
be called before the data may be written to the file using PMTBL . The text headers for each field
(column) and the data type stored in each field must be provided.

The grpnm string provides the facility to place the new table in an HDF ‘Vgroup’ data group. If a
Vgroup with the name grpnm does not exist, the table structure will not be created. The table
may be placed in the file outside of any Vgroup by setting grpnm = ‘ ’ in FORTRAN.

If a table with the name tblnm is created outside of a Vgroup, it must not already exist in the file.
This is to prevent the confusion caused by multiple data objects with the same name. Tables with
the same name may be stored in the same file, however, if they are placed in separate Vgroups.

INTEGER FUNCTION GMAR (modfil, arrnm, grpnm, start, dims, data)

GMAR returns a multi-dimensional array of data from an HDF SDS array structure contained in a
MODIS HDF file. The data array must be of the same data type as data in the target array structure.
In addition, the dimensions and array region requested from the array structure must be
consistent with the structure’s rank and dimensions. (The array structure’s data type, rank, and
dimensions may be retrieved using GMARDM). If a GMAR error message occurs the data
retrieval will not be performed. See Section 4.3, “Accessing Arrays” for additional information.

The grpnm string provides the facility to select an array structure placed in a particular HDF
‘Vgroup’ data group. Alternatively , the entire file will be searched for an array structure named
arrnm if grpnm = a blank string (‘ ’) in FORTRAN.

INTEGER FUNCTION GMARDM (modfil, arrnm, grpnm, dtype, rank, dims)

GMARDM retrieves the essential characteristics of an HDF SDS array structure contained in a
MODIS HDF file. This provides the information needed for properly reading data from the array
structure using GMAR.

The grpnm string provides the facility to select an array structure placed in a particular HDF
‘Vgroup’ data group. Alternatively , the entire file will be searched for an array structure named
arrnm if grpnm = a blank string (“ “) in FORTRAN.

Proper dimensioning of dims to provide sufficient elements for the dimensions of the array
structure may at first appear to require precognition. The easiest solution is to provide a
generous (32 element) dims array. Another approach is to use the rank variable as an input
containing the number of elements in dims. If dims is inadequate for the multi-dimensional array
structure in question, GMARDM will fail gracefully but will return the rank of the array structure,
allowing for the dimension information to be retrieved with a second call.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 C-11

INTEGER FUNCTION GMARIN (modfil,arrnm,grpnm,attrib, dtype,nelmnt,value)

GMARIN retrieves the value stored in an HDF local attribute associated with an array structure
given the attribute name. If the attribute cannot be found, the routine will return MFAIL (-1) .

The routine will also fail if the provided dtype is found to be different than the metadata’s data type
or the nelmnt is found to be too small to contain the number of metadata values. GMARIN
replaces this input information with the actual data type and number of elements contained in the
metadata value (in the case of character data, it is the length of the string, including the ‘\0’
terminator). The retrieved data type and attribute array size information may then be used to
properly retrieve the array structure metadata with a second call to the routine. Since dtype and
nelmnt are used to output information, these arguments may not be pointers to constants.

nelmnt, the address of the number of elements in the provided output value array, is a required
input if the metadata are to be retrieved. GMARIN normally replaces this input with the actual
array length required to hold this metadata. If the local attribute is not found or an HDF routine
fails, however, nelmnt is set to 0.

A variable of the proper data type and length should be passed for the value argument. The data
type information required to properly use this routine may be found in Appendix F, Modis Data
Product File Definitions.

The grpnm string provides the facility to select an array structure placed in a particular HDF
‘Vgroup’ data group. Alternatively , the entire file will be searched for an array structure named
arrnm if the argumentgrpnm = grpnm is a blank string (“ “) in FORTRAN.

INTEGER FUNCTION GMDMIN (modfil, arrnm, grpnm, dim, attrib, dtype, nelmnt,
value)

GMDMIN retrieves the value stored in an HDF local attribute associated with an array structure’s
dimension given the attribute name. If the attribute cannot be found, the routine will return MFAIL
(-1) .

The routine will also fail if the provided dtype is found to be different than the metadata’s data type
or the nelmnt is found to be too small to contain the number of metadata values.
getMODISdiminfo replaces this input information with the actual data type and number of
elements contained in the metadata value (in the case of character data, it is the length of the
string, including the ‘\0’ terminator). The retrieved data type and attribute array size information
may then be used to properly retrieve the array structure metadata with a second call to the
routine. Since dtype and nelmnt are used to output information, these arguments may not be
pointers to constants.

nelmnt, the address of the number of elements in the provided output value array, is a required
input if the metadata are to be retrieved. GMDMIN normally replaces this input with the actual
array length required to hold this metadata. If the local attribute is not found or an HDF routine
fails, however, nelmnt is set to 0.

A variable of the proper data type should be passed for the value argument. The data type
information required to properly use either routine may be found Appendix F, Modis Data Product
File Definitions.

The grpnm string provides the facility to select an array structure placed in a particular HDF
‘Vgroup’ data group. Alternatively , the entire file will be searched for an array structure named
arrnm if the argumentgrpnm = a blank string (“ “) in FORTRAN.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 C-12

INTEGER FUNCTION GMECIN (modfil, pvlname, pname, nms, dtype, pvalue)

GMECIN is part of a larger software system called the MODIS Applications Programming Interface
(API) Utility, abbreviated M-API. The M-API Utility consists of subroutines which allow MODIS
Science Team-supplied software to read and write data and metadata from/to HDF files. The
functionality of the M-API is defined in the M-API Specification.

In HDF-EOS, parameters are collected together to form a text block using PVL. Then the text
block is stored in HDF as a single attribute. GMECIN retrieve the value of a parameter from the
PVL text block.

In order to obtain value of a parameter inside a PVL text block, the function reads the PVL text
block specified by pvlname from the MODIS file, creates the internal ODL tree structure from the
PVL text block, and search the tree structure to retrieve the value of a parameter. The tree
structure is then saved internally for consecutive searches in the same PVL text block for code
efficiency. If multiple parameters will be retrieved from the same PVL block, just set pvlname to
the HDF PVL attribute name in the first call and set to ‘ ’ in the consecutive calls. If the next call is
to retrieve the value of a parameter in a different PVL text block, set the pvlname to the new PVL
attribute name. The saved old tree structure will be deleted automatically and a new ODL tree will
be created and saved. If you will no longer call GMECIN in your program and want to release the
memory occupied by the saved tree, just set both pvlname and pname to ‘ ’ .

INTEGER FUNCTION GMFIN (modfil, attrib, dtype, nelmnt, value)

GMFIN retrieves the value associated with an attribute = value metadata pair given the attribute
name. If the attribute cannot be found, the routine will return -1 and the passed variable
unchanged.

The routine will also fail if the provided dtype is found to be different than the metadata’s data
type or the nelmnt is found to be too small to contain the metadata’s value. GMFIN replaces this
input information with the actual data type and number of elements contained in the metadata
value (in the case of character data, it is the length of the string). These metadata metadata may
be used to properly retrieve the metadata value with a second call to the routine.

A variable of the proper data type should be passed for the value parameter. The data type
information required to properly use either routine may be found in Appendix B, M-API-Supplied
Constants, and Appendix F, MODIS Data Product File Definitions. Appendix B has a listing for
each M-API provided metadata attribute that includes the data type, the format, and/or specific
values associated with it.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 C-13

INTEGER FUNCTION GMFLDS (modfil, tblnm, grpnm, strln, recno, fldno, fldnm,
dtype, clsnm)

GMFLDS retrieves the essential characteristics of an HDF Vdata table structure contained in a
MODIS-HDF file. This provides the information needed for properly reading data from the table
structure using GMTBL or to write to it using PMTBL . If any of the output parameters are set to
NULL, then that data are not retrieved. An error (MFAIL) will be returned if:

1) The output strings are not long enough to contain the data type or field name strings for all the
Vdata's fields,

2) an unknown (e.g., not supported by the MODIS API) number type is encountered or

3) an HDF routine FAILs. The data type string (if requested) will be returned truncated to the
point where the fault occurred.

stringlen, the address of the length of the dtype and fname output strings, is a required input if
either of these strings is to be retrieved. GMFLDS normally replaces this input with the actual
array length required to hold the larger ot the two output strings. If an unknown data type or an
HDF routine fails, however, *stringlen is set to 0.

The grpnm string provides the facility to select a table structure existing in a particular HDF
‘Vgroup’ data group. Alternatively , the entire file will be searched for a table structure named
tblnm if grpnm = a blank string (‘ ’) in FORTRAN.

INTEGER FUNCTION GMTBL (modfil, tblnm, grpnm, fldnm, start, recno, buffsz,
data)

GMTBL retrieves one or more fields of data from one or more records in an HDF Vdata table
structure contained in a MODIS-HDF file. The data are placed in the data buffer in consecutive
records and in the order that the input fldnm are listed. The length of this buffer must be able to
contain all the fields requested times the number of records requested. If the buffsz input
indicates that it is too small to contain the actual quantity of data requested, GMTBL will fail, but it
will return the actual buffsz required. The output data buffer must be at least this size. See
Section 4.4, “Accessing Tables” for additional information.

The grpnm string provides the facility to select a table structure placed in a particular HDF
‘Vgroup’ data group. Alternatively , the entire file will be searched for a table structure named
tblnm if grpnm = a blank string (‘ ’) in FORTRAN.

INTEGER FUNCTION MSIZE (dtype)

The M-API uses a set of standard strings to describe the data types in stored in array and table
structures. These strings are returned, for example, by the routine GMARDM to describe the
data type of the target array structure. MSIZE returns the number of bytes required to store a
data type given this data type string. The input string may be a series of comma-delimited data
type strings, in which case the total number of bytes to store the record described by the string is
returned.

INTEGER FUNCTION OPMFIL (fname, access, modfil)

OPMFIL opens an HDF file and creates the HDF structures to support the M-API routines
access to it. OPMFIL must be called to produce the FORTRAN modfil array before any of these
routine can access it. Note that setting the file access to “w” creates a file and will overwrite a pre-
existing one. OPMFIL will close the file and return null outputs if an error occurs.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 C-14

INTEGER FUNCTION PMAR (modfil, arrnm, grpnm, start, dims, data)

PMAR places a multi-dimensional array of data into an HDF SDS array structure previously
created using CRMAR. The data in the array must be of the data type the target array structure
was created for. In addition, the dimensions and placement of the input array in the array structure
must be consistent with the structure’s rank and dimensions. If a PMAR error message occurs,
the data insertion will not be performed. See Section 4.3, “Accessing Arrays” for additional
information. This routine may be called multiple times to fill the array structure. Data previously in
the array structure may be overwritten.

The grpnm string provides the facility to select an array structure placed in a particular HDF
‘Vgroup’ data group. The entire file will be searched for an array structure named arrnm if
grpnm = a blank string (“ “) in FORTRAN.

INTEGER FUNCTION PMARIN (modfil, arrnm, grpnm, dtype, nelmnt, value)

PMARIN stores an attribute = value metadata pair in an HDF local attribute associated with an
array. The SDS array structure must be created (using CRMAR) prior to attaching a dimension
attribute to it If the attribute already exists, the value(s) are updated.

The grpnm e string provides the facility to select an array structure placed in a particular HDF
‘Vgroup’ data group. Alternatively, the entire file will be searched for an array structure named
arrnm if the argument grpnm = NULL in C.

INTEGER FUNCTION PMDMIN (modfil, arrnm, grpnm, dtype, nelmnt, value)

PMDMIN stores an attribute = value metadata pair in an HDF local attribute associated with an
array structure’s dimension. The SDS array structure must be created (using CRMAR) prior to
attaching a dimension attribute to it. If the attribute already exists, the value(s) are updated.

The grpnm string provides the facility to select an array structure placed in a particular HDF
‘Vgroup’ data group. Alternatively , the entire file will be searched for an array structure named
arrnm if the argument grpnm e = NULL in C.

INTEGER FUNCTION PMFIN (modfil, attrib, dtype, nelmnt, value)

PMFIN stores an attribute = value metadata pair to the indicated MODIS HDF file. If the attribute
already exists, the value will be updated.

File attributes should be limited to M-API provided attribute macros. (See Section 5, M-API-
Supplied Constants and Naming Conventions.) The data type should also be limited to the type
associated with the MODIS file attribute, and the value itself restricted to that data type and the
format and/or specific values associated with the attribute.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 C-15

INTEGER FUNCTION PMTBL (modfil, tblnm, grpnm, start, recno, datasz, data)

PMTBL places one or more data records into an HDF Vdata table structure previously created
using CRMTBL. The data to be inserted into the table must be placed into a data array. The
length of this array must be an integral number of the table structure's record length. The various
data that make up a record should be inserted into the buffer in the same order as the field
headers were ordered in the CRMTBL call. See Section 4.4, “Accessing Tables” for additional
information. This routine may be called multiple times to fill the table structure. Data previously in
the table structure may be overwritten.

The grpnm string provides the facility to select a table structure placed in a particular HDF
‘Vgroup’ data group. The entire file will be searched for a table structure named tblnm if grpnm =
‘ ’ in FORTRAN.

INTEGER FUNCTION SMECIN (cvalue, nelmnt, nstrs, substr)

ECS metadata values may be integer, floating point, or character string values or arrays of values.
Some may be multiple strings. The routine GMECIN retrieves such strings into a one-
dimension character array with the individual strings separated by nulls ('\0'). SMECIN breaks this
'packed' character array into its constituent substr ings. SMECIN copies these substr ings into
separate rows of a FORTRAN character string array.

INTEGER FUNCTION SRMGRP (modfil, grpnm, clsnm, objnm, objcls, objtyp)

SRMGRP searches an HDF Vgroup structure in a MODIS HDF file to find if an HDF object is in the
Vgroup. Both the group and the object are specified by their name and class name. However, the
classname is an optional feature. If class names are set to NULL, only name comparison is
performed. Because SDS (array) has no class name, the objectclass for an SDS is always ignored.
If the specified object exists, the function will return the reference id for Vdata and Vgroup, and
index for SDS. If the object does not exist, the function will return NO_OBJECT. The
NO_OBJECT is defined in mapic.inc as -2.

The groupname string provides the facility to select an array structure placed in a particular HDF
‘Vgroup’ data group. Alternatively , the entire file will be searched for an array structure named
arrayname if groupname = NULL in C and a blank string (“ “) in FORTRAN.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 C-16

(This page intentionally left blank.)

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 D-1

APPENDIX D: VARIABLES FOR ROUTINES

Table D-1 Variables for C Routines

Parameter
Data
Type Definition

access char * IN: Standard C access mode.

One of:

“r” Open for read only.

“w” Create for read/write, over writes pre-existing files.

“a” Open for read/write, creates a file that doesn’t exist.

arrayname char * IN: ASCII string that will be the name of the array, up to 256
characters long. Array names cannot begin with a blank character
and trailing blanks should be removed or else FORTRAN
programs will have difficulty accessing them.

attribute char * IN: ASCII string name of the attribute. Provided macros for accepted
MODIS HDF file attribute names are listed in Appendix B,
M-API-Supplied Constants.

buffsize long int * IN/OUT: Address of the data buffer size on input, in bytes. The buffer
must be at least this size. buffsize will normally return the
number of bytes of data successfully retrieved. If the buffer is
too small, however, the routine returns MFAIL and buffsize will
contain the size a buffer must be to contain the output data. If a
functional error occurs, it is set to 0 because making this output
size determination will be unreliable.

char_value char * IN: Character string containing the ‘packed’ multiple substrings of
ECS metadata retrieved with getMODISECSinfo.

Do not deallocate char_value until substr array gets correct values.

classname char * IN: ASCII string that will be the class name of the table, up to 64
characters long. If set to NULL or an empty string, the table will
have no class.

OUT: ASCII string for the class name of the table structure. Provided
array may be up to 64 bytes long.

data void * and
unsigned

char *

IN/OUT: Address of the data buffer.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 D-2

Parameter
Data
Type Definition

data_type char * IN/OUT: Address of the data type of the value output. The attribute’s
value will not be retrieved unless the input data type matches
that of the attribute.

NOTE: This argument must not be a the address of a constant string
and should point to memory at least 8 bytes long.

Permitted C data types:

“int8”
“uint8”
“int16”
“uint16”
“int32”
“uint32”
“float32”
“float64”
“char *”

dimension long int * IN: The dimension number which the attribute is attached to (0-
based). getMODISdiminfo associates the 0 dimension with the
 least rapidly varying array index of an HDF SDS array structure.

dimsizes long int * IN: The size of the array being retrieved from the array structure.
The dimsize array must have the same number of elements as
the target array structure has dimensions and the product of the
array dimensions must equal the number of elements in data.

OUT: Array describing the size of each dimension of the target HDF
array structure. The dimensions will not be provided unless
dimsizes contains sufficient elements for the rank of the array.

ECSattr_names_for
_all_handles

long int * IN: A character array with size of [PGSd_MET_NUM_OF_GROUPS]
[MAX_ECS_NAME_L], where
PGSd_MET_NUM_OF_GROUPS] is 20 and
MAX_ECS_NAME_L is 50. This array is typedef-ed as
ECSattr_names_for all_handles. Each row in this array is a
character string used as a global attribute name for storing an
ECS PVL text block which has a handle in the corresponding
row in mdHandles array. Each name, which is a string, should be
less that MAX_ECS_NAME_L characters and occupies one row
in the array.

Specifies the number of actual handles contained in
mdHandles. This may be set from 0 to
PGSd_MET_NUM_OF_GROUPS.

fieldname char * IN: Array of comma-delimited ASCII string table headers. The
headers should be in the same order that the data for each table
row will subsequently be written in. Each field name must be less
than 128 characters long and the Vdata table may contain up to
36 fields.

OUT: Array of comma-delimited ASCII string table headers.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 D-3

Parameter
Data
Type Definition

fieldno long int * OUT: Number of fields (columns) present in the table structure.

file Modfile* IN/OUT: Pointer to MODFILE structure address used to reference a file
in all M-API routines. Set to NULL when the file is successfully
closed.

filename char * IN: Path and filename for the file to be opened, up to 255 characters
long.

groupname char * IN: ASCII string name of the data group containing the target array
structure.

For ‘GET’ functions: If set to NULL the entire file will be searched for the
array structure named arrayname.

For ‘PUT’ functions: If set to NULL or an empty string, the table will not
be placed in a data group.

HDFattrNames Modfile* IN: A character array with size of [PGSd_MET_NUM_OF_GROUPS]
[MAX_ECS_NAME_L], where
PGSd_MET_NUM_OF_GROUPS is 20 and
MAX_ECS_NAME_L is 256. This array is typedef-ed as
ECSattr_names_for_all_handles. Each row in this array is a
character string used as a global attribute name for storing an
ECS PVL text block which has a handle in the corresponding
row in mdHandles array. Each name, which is a string, should be
less than MAX_ECS_NAME_L characters and occupies one row
in the array.

mdHandles Modfile* IN: A character array with size of [PGSd_MET_NUM_OF_GROUPS]
[PGSd_MET_GROUP_NAME_L], where
PGSd_MET_NUM_OF_GROUPS is 20 and
PGSd_MET_GROUP_NAME_L is 50. This array is typedef-ed
as PGSt_MET_all_handles. Each row in the array stores a
handle to an internal ODL tree structure which will be written out
as an ECS PVL attribute. Each handle, which is a string, should
be less than 50 characters and occupy one row in the array.
Therefore, the maximum number of handles should be 20.

n_elements long int * IN/OUT: Address of the number of memory elements as data_type
available in the value array. The attribute's value will not be
retrieved unless *n_elements indicates that there is sufficient
space available in value. getMODISECSinfo replaces this input
with the number of elements required to contain the metadata.
If the parameter cannot be found, *n_element will be left
unchanged, or set to 0 if a function error occurs.

NOTE: This argument must not be the address of a constant.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 D-4

Parameter
Data
Type Definition

n_elements

(continued)

long int * SPECIAL CASE for multiple strings:

If there are multiple character strings for the parameters, strings will be
packed together and returned in value . The separator between strings
is '\0'. The low 16 bit of n_elements will return the total bytes in the
values, including the '\0's between the strings and the '\0' at the end of
last string. The part above the low 16 bits will return number of strings
packed - 1. To obtain how many string retrieved, do the calculation:

n_strings = *n_elemets/65536 + 1

n_bytes = *n_elements%65536

Therefore, if *n_elements is less than 65536, there is only one strings
in value and *n_elements is the number of bytes (characters) in the
string, including the last '\0'.

n_strings long int * IN/OUT: Address of the number of pointers available in the substr array.
The substr pointers will not be set to the substrings in
char_value unless there are sufficient pointers available in the
pointer array. substrMODISECSinfo replaces this input with the
number of substrings pointers have been set to in the
char_value array. *n_strings will be set to 0 if a function error
occurs. This argument must not be the address of a constant.

NumHandles long int * IN: Specifies the number of actual handles contained in
mdHandles. This may be set from 0 to
PGSd_MET_NUM_OF_GROUPS.

objectclass char * IN: (Optional)ASCII string of the class name of the data object. Set
to NULL for not comparing the object class

objectname char * IN: ASCII string of the object name to be searched.

objecttype int32 IN: Type of the object; The valid objects are:

DFTAG_NDG (for SDS)
DFTAG_VH (for Vdata, or attribute if the object class is set to

Attr0.0)
DFTAG_VG (for Vgroup).

parmName char * IN: ASCII string name of a parameter whose value will be retrieved.
Set both PVLAttrName and parmName to NULL in C will release
the memory occupied by the internal ODL tree. The parmName
could parameter name only or combination of name and class
represented as "name.class".

PGSt_MET_all_handles char * IN: A character array with size of [pGSd_MET_NUM_OF_GROUPS]
[PGS_MET_GROUP_NAME_L], where
PGSd_MET_NUM_OF_GROUPS is 20 and
PGSd_MET_GROUP_NAME_L is 50. This array is typedef-ed
as PGSt_MET_all_handles. Each row in the array stores a
handles to an internal ODL tree structure which will be written
out a an ECS PVL attribute. Each handles, which is a string,
should be less than 50 characters and occupy, one row in the
array. Therefore, the maximum number of handles should be 20.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 D-5

Parameter
Data
Type Definition

PVLAttrName char * IN: ASCII string name of the HDF attribute which contains the PVL
text block. Set PVLAttrName to NULL in C while parmName is
not NULL in C or not ‘ ’ in FORTRAN will result in searching the
last PVL text block for the value of parmName parameter.

rank long int * IN/OUT: The number of elements in the array dimsizes on input. This is
replaced with the number of dimensions in the target HDF array
structure for output. It is set to 0 if a functional error occurs. No
dimensional information will be provided if rank = NULL.

recno long int * IN: Number of records being inserted into the table structure.

OUT: Number of records(rows) present in the table structure.

NOTE: The product of recno and the table structure's record length
must have the same length as the buffer addressed by data

reproc_status char * IN: Intent to reprocess the data.

start long int * IN: Zero-based record location to begin placing reading the data
into the table structure.

NOTE: The start array must have the same number of elements as the
target array structure has dimensions. The start location must be
contiguous to the location of records already in the table. For
placing If start = -1 data records will be appended to the end of
the table structure.

stringlen long int * IN/OUT: Input of the minimum length of fieldname and data_type
arrays. Returns the minimum array length actually required to
hold the longer of the two strings. It is set to 0 if a functional error
occurs.

substr char * OUT: Array of poiners to the constituent substrings contained in the
char_value array.

tablename char * IN: ASCII string that will be the name of the table, up to 64
characters long. Table names should not include trailing blanks
or else FORTRAN programs will have difficulty accessing them.

temporal_coverage char * IN: Description observation period in ECS metadata syntax.

value void IN: Address of the data to store in the in the attribute. If the attribute
already exists, the value will be updated. Values should conform
to the data types, formats and/or those values enumerated for
the attribute in Appendix B, M-API-Supplied Constants.

OUT: Buffer for the value. User should allocate enough memory for
this buffer. If there are multiple data values in character type, the
value will be placed consecutively. If the data value type is "char
*", string will be separated by '\0'.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 D-6

Table D-2 Variables for FORTRAN Routines

Parameter Data Type Definition

access Character*(*) IN: Standard C access mode.

One of:

‘r’ Open for read only.
‘w’ Create for read/write.
‘a’ Open for read/write (append.).

arrnm Character*(*) IN: ASCII string name of the target HDF array structure, up to 128
characters long. Array names cannot begin with a blank character.

attrib Character*(*) IN: ASCII string name of the attribute. Provided macros for accepted
MODIS HDF file attribute names are listed in Appendix B, M-API-
Supplied Constants.

buffsize Integer IN/OUT: The data buffer size on input, in bytes. The buffer must be at
least this size. buffsize will normally return the number of bytes of
data successfully retrieved. If the buffer is too small, however, the
routine returns MFAIL and buffsize will contain the size a buffer
must be to contain the output data requested. If a functional error
occurs, it is set to 0 because making this output size determination
will be unreliable.

clsnm Character*(*) IN: ASCII string that will be the class name of the table, up to 64
characters long. If set to a blank string, the table will have no class.

OUT: ASCII string for the class name of the table structure. Provided array
should be at least (64) bytes long.

cvalue Character*(*) IN: Character string containing the 'packed' multiple substrings of
ECS metadata retrieved with GMECIN.

data <any> IN/OUT: Multi-dimensional data array.

NOTE:

dim Integer IN: The dimension number which the attribute is attached to (0-based).
GMDMIN associates the 0 dimension with the most rapidly varying
array index of an HDF SDS array structure.

dims Integer IN: The size of the array being inserted into the array structure. The
dims array must have the same number of elements as the target
array structure has dimensions and the product of the array
dimensions must equal the number of elements in data.

OUT: Array describing the size of each dimension of the target HDF array
structure. The dimensions will not be provided unless dims
contains sufficient elements for the rank of the array. (HDF 3.3r4
SDS’s may contain up to 32 dimensions.)

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 D-7

Parameter Data Type Definition

dtype Character*(*) IN/OUT: Data type of the value output. The attribute’s value will not be
retrieved unless the input data type matches that of the attribute.
GMARIN replaces with the data type of the retrieved metadata.

NOTE: This argument must not be a parameter or constant. The memory
size of dtype should be at least 13 characters long.

Permitted FORTRAN data types:

‘INTEGER*1’
‘UINTEGER*1’
‘INTEGER*2’
‘UINTEGER*2’
‘INTEGER*4’
‘UINTEGER*4’
‘REAL*4’
‘REAL*8’
‘CHARACTER*(*)’

fldnm Character*(*) IN: Array of comma-delimited ASCII string table headers. The headers
should be in the same order that the data for each table row will
subsequently be written in. Each field name must be less than 128
characters long and the Vdata table may contain up to 36 fields.

OUT: Array of comma-delimited ASCII string table headers.

fldno Integer OUT: Number of fields (columns) present in the table structure.

fname Character*(*) IN/OUT: Number of elements availabel in the value array. Output replaces
with the number of elements required to contain the metadata.

grpnm Character*(*) IN: ASCII string name of the data group containing the target array
structure.

OUT: ASCII string name of the data group to place the new array in.

For ‘GET’ functions: If grpnm = ’ ’ the entire file will be searched for the
array structure named arrnm/tblnm.

For ‘PUT’ functions: If set to “ “(blank) the array will not be placed in a data
group.

hdfatrnms Character*255(*) IN: A character array with size of [PGSd_MET_NUM_OF_GROUPS]
[MAX_ECS_NAME_L-1], where PGSd_MET_NUM_OF_GROUPS
is 20 and MAX_ECS_NAME_L is 256. Each string in this array is a
character string used as a global attribute name for storing an ECS
PVL text block which has a handle in the corresponding row in
mdHandles array. Each name, which is a string, should be less that
MAX_ECS_NAME_L characters and occupies one row in the array.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 D-8

Parameter Data Type Definition

mdhandle Character*45(*) IN: An array of character strings. The memory size of the array is
[PGSd_MET_NUM_OF_GROUPS]
[PGS_MET_GROUP_NAME_L-1], where
PGSd_MET_NUM_OF_GROUPS is 20 and
PGSd_MET_GROUP_NAME_L is 50. This array is typedef-ed as
PGSt_MET_all_handles. Each row in the array stores a handles to
an internal ODL tree structure which will be written out a an ECS
PVL attribute. Each handles, which is a string, should be less than
50 characters and occupy, one row in the array. Therefore, the
maximum number of handles should be 20.

modfil Integer IN: Array that is used to reference a MODIS HDF file in all other M-API
routines.

OUT: Array that is used to reference the file in all other M-API routines.
The array will return all zeroes if an error occurs.

nelmnt Integer IN: The composite output dimensions, from GMECIN, containing (in
the case of character string metadata the total length (in bytes) of
the string in cvalue in its lower two bytes and the number of
substrings packed into cvalue less one in the upper two bytes.

The calculations:

n_strings = n_elements/65536 + 1
n_bytes = n_elements%65536

provide the number of substrings and the total length, respectively,
of the data in cvalue. When there is only one string in cvalue,
nelmnt will be less than 65536 and there is no need to use
SMECIN.

OUT: Number of elements availabel in the value array. The attribute’s
value will not be retrieved unless nelmnt indicates that there is
sufficient space in value. Output replaces with the number of
elements required to contain the metadata. If a function error
occurs, however, nelmnt is set to 0. This argument must not be a
parameter or constant.

nms Character*(*) IN/OUT: The number of memory elements as dtype available in the value
array. The attribute's value will not be retrieved unless nms
indicates that there is sufficient space available in value. GMECIN
replaces this input with the number of elements required to contain
the metadata. If the parameter cannot be found, *nms will be left
unchanged, or set to 0 if a function error occurs. This argument
must be a variable.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 D-9

Parameter Data Type Definition

nms

(continued)

Character*(*) SPECIAL CASE for multiple strings:

If there are multiple character strings for the parameters, strings will be
packed together and returned in value . The separator between strings is
'\0' (numerical value 0). The low 16 bit of nms will return the total bytes in
value, including the '\0's. The part above the low 16 bits will return (
number of strings packed - 1). To obtain how many string retrieved, do the
calculation:

n_strings = nms/65536 + 1

n_bytes = MOD(nms, 65536)

Therefore, if nms is less than 65536, there is only one strings in value and
nms is the number of bytes (characters) in the string.

nstrs Integer IN/OUT: Number of elements available in the substr array. The substr will
not be set to the substrings in cvalue unless there are sufficient
elements available in the substr array. SMECIN replaces this input
with the number of substrings already set in the cvalue array. nstrs
will be set to 0 if a function error occurs.

numhands Integer IN: Specifies the number of actual handles contained in mdHandles.
This may be set from 0 to PGSd_MET_NUM_OF_GROUPS.

objcls Character*(*) IN: (Optional)ASCII string of the class name of the data object. Set to
NULL for not comparing the object class.

objnm Character*(*) IN: ASCII string of the object name to be searched.

objtyp Integer IN: type of the object; The valid objects are:

DFTAG_NDG, DFTAG_VH, DFTAG_VG.

pname Character*(*) IN: ASCII string name of a parameter whose value will be retrieved. Set
both pvlname and pname to ‘ ’ will release the memory occupied
by the internal ODL tree. The pname could parameter name only or
combination of name and class represented as "name.class".

pvlname Character*(*) IN: ASCII string name of the HDF attribute which contains the PVL text
block. Set pvlname to ‘ ’ while pname is not equal to ‘ ’ will result in
searching the last PVL text block for the value of pname parameter.

rank Integer IN/OUT: The number of elements in the array dimsizes on input. This is
replaced with the number of dimensions in the target HDF array
structure for output. It is set to 0 if a functional error occurs.

recno Integer IN: Number of records being inserted into the table structure. The
product of recno and the table structure's record length must have
the same length as the buffer addressed by data.

OUT: Number of records(rows) present in the table structure.

reproc Character*(*) IN: Intent to reprocess the data.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 D-10

Parameter Data Type Definition

start Integer IN: Zero-based record location to begin placing the data into the table
structure. The start location must be contiguous to the location of
records already in the table. If start = -1 data records will be
appended to the end of the table structure. The start array must
have the same number of elements as the target array has
dimensions.

stringlen Integer IN/OUT: Minimum length of fldnm and dtype arrays. Returns the minimum
array length actually required to hold the longer of the two strings. It
is set to 0 if a functional error occurs.

substr Character*(*) OUT: Array of substrings obtained from the cvalue array.

tblnm Character*(*) IN: ASCII string that will be the name of the table, up to 64 characters
long.

tcov Character*(*) IN: Description observation period in ECS metadata syntax.

value <valid type> IN: Data to store in the in the attribute. If the attribute already exists, the
value will be updated. Values should conform to the data types,
formats and/or those values enumerated for the attribute in
Appendix B, M-API-Supplied Constants.

OUT: Value associated with the attribute.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 E-1

APPENDIX E: ERROR MESSAGES FOR ROUTINES

Table E-1 Error Messages for C Routines

C Routine Error Message Description

closeMODISfile closeMODISfile cannot close a null
file.

closeMODISfile detected FAIL from
HDF function Sdend. Unable to close
filename.

File could not be closed
because access
identifiers to data
objects are still attached
to the file. Changes to
the file may be lost.

WARNING: closeMODISfile closed new
file filename without complete
header information.

The file has been
successfully closed, but
completeMODISfile
should be used instead
so that the required file
header information will
be included.

completeMODISfile completeMODISfile unable to
continue with empty input.

closeMODISfile detected FAIL from
HDF function Hclose. Unable to
close file.

closeMODISfile detected FAIL from
HDF function Sdend. Unable to close
file.

completeMODISfile detected FAIL
from HDF procedure Hclose. Unable
to close file.

File could not be closed
because access
identifiers to data
objects are still attached
to the file. Changes to
the file may be lost.

WARNING: completeMODISfile revised
header data of pre-existing
filename file.

The file has been
successfully closed, but
closeMODISfile should
be used instead to
prevent modification to
the MODIS HDF file’s
metadata.

WARNING: completeMODISfile unable
to revise header data of filename
file open for read-only.

The file has been
successfully closed and
was accessed only for
reading.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 E-2

C Routine Error Message Description

createMODISarray createMODISarray unable to make a
new arrayname array with a NULL
file MODFILE structure.

createMODISarray unable to make a
new array without an array name
input.

createMODISarray unable to make a
new arrayname array without array
dimension input.

createMODISarray unable to make a
new arrayname array without array
data type input.

createMODISarray unable to make a
new arrayname array in file opened
for read only.

createMODISarray found arrayname
array already exists.

createMODISarray found arrayname
array already exists in data group
“groupname”.

createMODISarray unable to find
data group groupname to place new
arrayname array in.

createMODISarray unable to create
arrayname array of data type
data_type.

createMODISarray unable to create
arrayname array with rank
dimensions.

createMODISarray detected FAIL from
HDF procedure SDcreate attempting
to create arrayname array.

createMODISarray detected FAIL from
HDF procedure Sdend access while
attempting to create arrayname
array.

createMODISarray detected FAIL from
HDF procedure Vattach attempting to
create arrayname array.

createMODISarray detected FAIL from
HDF procedure Vaddtagref attempting
to create arrayname array.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 E-3

C Routine Error Message Description

createMODISarray
(continued)

createMODISarray detected FAIL from
HDF procedure Vdetach attempting to
create arrayname array.

createMODIStable createMODIStable unable to make a
new table without a table name
input.

createMODIStable unable to make a
new tablename table with a NULL
file MODFILE structure.

createMODIStable unable to make a
new tablename table without field
names input.

createMODIStable unable to make a
new tablename table without field
data types input.

createMODIStable unable to make a
new tablename table in file opened
for read only.

createMODIStable found the
tablename table already exists.

createMODISarray found arrayname
array already exists in data group
“groupname”.

createMODISarray unable to find
data group groupname to place new
arrayname array in.

createMODIStable unable to create
tablename table with # byte
records.

Vdata table records are
limited to 32K each.

createMODIStable unable to create
tablename table with data_type data
types.

createMODIStable unable to allocate
memory for fieldname temporary
buffer used to create the tablename
table.

createMODIStable unable to allocate
memory for data_type temporary
buffer used to create tablename
table.

createMODIStable found the
tablename table to have no fields
in the fieldname string fieldname.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 E-4

C Routine Error Message Description

createMODIStable
(continued)

createMODIStable unable to support
the creation of # fields in the
field name string “fieldname” for
the “tablename” table.

Vdata table records are
limited to fields

createMODIStable found the
tablename table to have # data
types in the data type string
data_type instead of #.

One data type must be
supplied for each field in
the Vdata table.

createMODIStable detected FAIL from
HDF procedure VSattach attempting
to create the tablename table.

createMODIStable detected fail from
HDF procedure VSfdefine for field
and data_type of the tablename
table.

createMODIStable detected FAIL from
HDF procedure VSsetfields creating
the tablename table.

createMODIStable unable to allocate
memory for dummy field buffer used
to create the tablename table.

createMODIStable detected FAIL from
HDF procedure VSwrite creating the
tablename table.

createMODIStable detected FAIL from
HDF procedure Vattach attempting to
create the tablename table.

createMODIStable detected FAIL from
HDF procedure Vaddtagref attempting
to create the tablename table.

createMODIStable detected FAIL from
HDF procedure Vdetach attempting to
create the tablename table.

getMODISardims getMODISardims unable to access the
arrayname array with a NULL file
MODFILE structure.

getMODISardims unable to access an
array without an array name input.

getMODISardims unable to return the
arrayname array’s dimensions
without a dimsizes array.

getMODISardims cannot find the
arrayname array.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 E-5

C Routine Error Message Description

getMODISardims
(continued)

getMODISardims cannot find the
arrayname array in the groupname
data group.

getMODISardims unable to find the
groupname data group containing the
arrayname array.

getMODISardims cannot get an sds_id
for the arrayname array.

getMODISardims detected FAIL from
HDF procedure SDgetinfo attempting
to access the arrayname array.

getMODISardims detected FAIL from
HDF procedure SDendaccess
attempting to detach from the
arrayname array.

*rank (if provided) is set to 0 if any of the errors
associated with these messages occurs.

The output from
getMODISardims may
not be valid if
SDendaccess fails.

getMODISardims unable to return the
arrayname array’s sds_rank
dimension sizes in a rank element
dimsizes array.

getMODISardims will not
attempt to write to the
dimsizes output array,
but it will return the rank
of the target HDF array
structure. The dimsizes
array needs to have at
least this many
elements.

getMODISarinfo getMODISarinfo unable continue with
empty n_elements.

getMODISarinfo unable to access an
array attribute without an
attribute name input.

getMODISarinfo unable to access the
attribute attribute without the
name of the array it is associated
with.

No arrayname attribute
was provided.

getMODISarinfo cannot find array
“arrayname”.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 E-6

C Routine Error Message Description

getMODISarinfo
(continued)

getMODISarinfo unable to find the
groupname data group containing the
arrayname array.

searchMODISgroup fails to search
object objectname in group
groupname because Vattach fails.

searchMODISgroup unable to find the
specified Vgroup group groupname.

searchMODISgroup fails to obtain
objectname's tag and reference
number.

This may be preceeded
by one of the following
three messages:

getMODISarinfo cannot find the
arrayname array in the groupname
data group.

The Vdata table could
not be found in the
specified Vgroup data
group.

getMODISarinfo detected FAIL
retrieving the data type string for
the attribute attribute using
DFNT_to_datatype.

M-API currently does
not recogniize the HDF
number types 3
(unsigned char), 7
(float128), 27 (unsigned
int64), 28 (int128), 30
(unsigned int128), 42
(char16), 43 (unsigned
char 16), or any greater
than 512 (machine
specific, custom, or little
endian storage formats).

getMODISarinfo cannot find local
array attribute attribute.

getMODISarinfo detected FAIL from
HDF procedure SDselect attempting
to read the attribute attribute.

getMODISarinfo detected FAIL from
HDF procedure SDattrinfo attempting
to read the attribute attribute.

getMODISarinfo detected FAIL from
HDF procedure SDreadattr attempting
to read the attribute attribute.

getMODISarinfo unable to read local
array attribute without output
buffer for attribute.

getMODISarinfo detected FAIL from
HDF procedure SDendaccess
attempting to read the attribute
attribute.

*n_elements is set to 0 if
any of the errors
associated with the
messages above occur.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 E-7

C Routine Error Message Description

getMODISarinfo
(continued)

WARNING: Vgroup groupname contains
non-existing SDS object with
reference id ref_id.

Information about an
SDS array structure that
doesn't really exist has
been found in the
Vgroup data group
being accessed. While
this will not directly
prevent reading the
specified local array
attribute, it does identify
a probable defect in the
HDF file.

getMODISarray getMODISarray unable to read from
the arrayname array with a NULL
file MODFILE structure.

getMODISarray unable to read from
an array without an array name
input.

getMODISarray unable to read from
the arrayname array without array
dimension input.

getMODISarray unable to read from
the arrayname array without a data
buffer.

getMODISarray cannot find the
arrayname array.

getMODISarray cannot find the
arrayname array in the groupname
data group.

getMODISarray unable to find the
groupname data group containing the
arrayname array.

getMODISarray unable to read data
from invalid array structure
locations in the arrayname array.

SDS_footprintOK detected FAIL from
HDF procedure Sdgetinfo.

Unable to access data at invalid
array structure locations “start[0]
... start[r]”.

This error message may
be preceeded by one of
the following two
messages:

getMODISarray detected FAIL from
HDF procedure SDselect while
attempting to read from the
arrayname array.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 E-8

C Routine Error Message Description

getMODISarray
(continued)

getMODISarray detected FAIL from
HDF procedure SDgetinfo while
attempting to read from the
arrayname array.

getMODISarray detected FAIL from
HDF procedure SDwritedata while
attempting to read from the
arrayname array.

getMODISarray detected FAIL from
HDF procedure SDendaccess while
attempting to read from the
arrayname array.

getMODISdiminfo getMODISdiminfo unable continue
with empty n_elements.

getMODISdiminfo unable to access an
array attribute without an
attribute name input.

getMODISdiminfo unable to access
the attribute attribute without the
name of the array it is associated
with.

No arrayname attribute
was provided.

getMODISdiminfo cannot find array
“arrayname”.

getMODISdiminfo unable to find the
groupname data group containing the
arrayname array.

searchMODISgroup fails to search
object objectname in group
groupname because Vattach fails.

searchMODISgroup unable to find the
specified Vgroup group groupname.

searchMODISgroup fails to obtain
objectname's tag and reference
number.

This may be preceeded
by one of the following
three messages:

getMODISdiminfo cannot find the
arrayname array in the groupname
data group.

The Vdata table could
not be found in the
specified Vgroup data
group.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 E-9

C Routine Error Message Description

getMODISdiminfo
(continued)

getMODISdiminfo detected FAIL
retrieving the data type string for
the attribute attribute using
DFNT_to_datatype.

M-API currently does
not recogniize the HDF
number types 3
(unsigned char), 7
(float128), 27 (unsigned
int64), 28 (int128), 30
(unsigned int128), 42
(char16), 43 (unsigned
char 16), or any greater
than 512 (machine
specific, custom, or little
endian storage formats).

getMODISdiminfo cannot find local
array dimension attribute
attribute.

getMODISdiminfo detected FAIL from
HDF procedure SDselect attempting
to read the attribute attribute

getMODISdiminfo detected FAIL from
HDF procedure SDgetinfo attempting
to read the attribute attribute.

getMODISdiminfo detected FAIL from
HDF procedure SDattrinfo attempting
to read the attribute attribute.

getMODISdiminfo unable to retrieve
an attribute attribute for
dimension dimension. The arrayname
array has rank dimensions.

getMODISdiminfo detected FAIL from
HDF procedure SDgetdimid attempting
to read the attribute attribute.

getMODISdiminfo detected FAIL from
HDF procedure SDreadattr attempting
to read the attribute attribute.

getMODISdiminfo unable to read
local array attribute without
output buffer for attribute.

getMODISdiminfo detected FAIL from
HDF procedure SDendaccess
attempting to read the attribute
attribute.

*n_elements is set to 0 if
any of the errors
associated with the
messages above occur.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 E-10

C Routine Error Message Description

getMODISdiminfo
(continued)

WARNING: Vgroup groupname contains
non-existing SDS object with
reference id ref_id.

Information about an
SDS array structure that
doesn't really exist has
been found in the
Vgroup data group
being accessed. While
this will not directly
prevent reading the
specified local array
attribute, it does identify
a probable defect in the
HDF file.

getMODISECSinfo getMODISECSinfo can not continue
without the n_elements input.

getMODISECSinfo unable to access an
ECS metadata without the parameter
name input.

getMODISECSinfo unable to access
the parmName metadata without the
name of the global attribute it is
stored within.

getMODISECSinfo unable to access
the parmName metadata from ECS
global attribute PVLAttrName
without the data type input.

getMODISECSinfo detected fails in
procedure MPVL2ODL while attempting
to retrieve parameter parmName from
ECS global attribute PVLAttrName.

getMODISECSinfo can not find the
parmName metadata.

getMODISECSinfo found the value for
parameter parmName is undefined.

getMODISECSinfo unable to access
the parmName metadata without the
output data buffer.

getMODISECSinfo found unknown ODL
value type valueNode->item.type for
parameter parmName.

getMODISfields getMODISfields unable to access the
tablename table with a NULL file
MODFILE structure.

getMODISfields unable to access a
table without a table name input.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 E-11

C Routine Error Message Description

getMODISfields
(continued)

getMODISfields cannot find
tablename table.

getMODISfields unable to find the
groupname data group containing the
tablename table.

searchMODISgroup fails to search
object objectname in group
groupname because Vattach fails.

searchMODISgroup unable to find the
specified Vgroup group groupname.

This may be preceeded
by one of the following
two messages:

getMODISfields cannot find the
tablename table in the groupname
data group.

searchMODISgroup fails to obtain
objectname's tag and reference
number.

This may be preceeded
by the following
message:

The Vdata table could
not be found in the
specified Vgroup data
group.

getMODISfields detected FAIL from
HDF procedure VSattach attempting
to access the tablename table.

getMODISfields detected FAIL from
HDF procedure VSgetfields.

A problem occurred with
retrieving information
about the number and
names of the table’s
fields.

getMODISfields detected FAIL
retrieving the data type string for
the tablename table using
Vfdatatypes.

VFdatatypes detected FAIL from HDF
routine Vfnfields.

VFdatatypes detected unrecognized
HDF number type.

M-API currently does not recognize number
types 3 (unsigned char), 7 (float128), 27
(unsigned int64), 28 (int128), 30 (unsigned
int128), 42 (char16), 43 (unsigned char 16), or
any greater than 512 (machine specific, custom,
or little endian storage formats).

This error message may
be preceeded by one of
the following two
messages:

getMODISfields detected FAIL from
HDF procedure VSinquire.

A problem occurred with
retrieving information
about the number of
records in the table.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 E-12

C Routine Error Message Description

getMODISfields
(continued)

getMODISfields detected FAIL from
HDF procedure VSinquire.

A problem occurred with
retrieving information
about the number of
records in the table.

*stringlen is set to 0 if
any of the errors
associated with the
messages above occur.

getMODISfields unable to fit
tablename table's <string length>
byte field names string into output
string of unknown length.

The length of the output
string fieldname was not
provided in the
parameter stringlen.

getMODISfields unable to fit the
tablename table's <string length>
byte field names into *stringlen
byte output string.

stringlen will return the
array length required to
hold the table’s field
names.

getMODISfields unable to fit
tablename table's data types string
into output string of unknown
length.

The length of the output
string data_type was not
provided in the
parameter stringlen.

getMODISfields unable to fit the
tablename table's <string length>
byte data types into *stringlen
byte output string.

VFdatatypes unable to fit data
types into output string.

This error message will
be preceeded by:

*stringlen will return the
array length required to
hold the table’s data
type string. If both the
field names and the data
types were requested,
the larger of the two
array lengths is
returned.

getMODISfileinfo getMODISfileinfo detected FAIL from
HDF procedure SDattrinfo.

getMODISfileinfo detected FAIL from
HDF procedure SDreadattr.

getMODIStable getMODIStable unable continue
without buffer size information.

A location for buffsize
information was not
provided.

getMODIStable unable to read from
the tablename table with a NULL
file MODFILE structure.

getMODIStable unable to read from a
table without a table name input.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 E-13

C Routine Error Message Description

getMODIStable
(continued)

getMODIStable unable to read from
the tablename table without a data
buffer.

getMODIStable cannot find tablename
table.

getMODIStable unable to find the
groupname data group containing the
tablename table.

searchMODISgroup fails to search
object objectname in group
groupname because Vattach fails.

searchMODISgroup unable to find the
specified Vgroup group groupname.

This may be preceeded
by one of the following
two messages:

getMODIStable cannot find the
tablename table in the groupname
data group.

searchMODISgroup fails to obtain
objectname's tag and reference
number.

This may be preceeded
by the following
message:

The Vdata table could
not be found in the
specified Vgroup data
group.

getMODIStable detected FAIL from
HDF procedure VSattach attempting
to access the tablename table.

getMODIStable unable to read data
from the tablename table from
invalid table structure record
start.

getMODIStable unable to read data
from the tablename table from
invalid table structure locations.

Either access to some
records or one or more
fields requested do not
exist in the table.

getMODIStable detected FAIL from
HDF procedure VSsetfields
attempting to read tablename table.

getMODIStable detected FAIL from
HDF procedure VSsizeof attempting
to read tablename table.

getMODIStable detected FAIL from
HDF procedure VSseek attempting to
read tablename table.

getMODIStable detected FAIL from
HDF procedure VSread attempting to
read tablename table.

*buffsize is set to 0 if any
of the errors associated
with the messages
above occurs.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 E-14

C Routine Error Message Description

getMODIStable
(continued)

getMODIStable detected FAIL from
HDF procedure VSinquire.

Should this error occur,
getMODIStable will still
return MAPIOK
(because the data were
successfully retrieved)
and *buffsize is set
correctly.

getMODIStable unable to fit <output
size> bytes of tablename table's
data into a buffsize byte output
buffer.

getMODIStable will not
attempt to write to the
data output buffer, but it
will return the buffer
length (in bytes)
required to hold the
requested records from
the table.

WARNING: Vgroup groupname contains
non-exist Vdata object with
reference id ref_id.

Information about a
Vdata table that doesn't
really exist has been
found in the Vgroup
data group being
accessed. While this will
not directly prevent
reading the specified
Vdata table, it does
identify a probable
defect in the HDF file.

WARNING: getMODIStable retrieved
dummy record from empty table
tablename.

The record retrieved
from the table does not
contain geophysical
data. getMODIStable
returns MAPIOK (0),
however. This situation
can only occur if NO
geophysical data were
written into the table or
the single record in the
Vdata was not written
using M-API.

openMODISfile openMODISfile unable to access a
file without a filename input.

openMODISfile unable to open file
filename without access mode input.

openMODISfile unable to allocate
memory for a MODIS file structure
for file filename.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 E-15

C Routine Error Message Description

openMODISfile
(continued)

openMODISfile unable to recognize
access type access to open file
filename.

openMODISfile unable to find file
filename.

openMODISfile detected FAIL from
HDF procedure SDstart opening file
filename.

May be unable to open
the HDF file because it is
write-protected.

openMODISfile detected NULL from
HDF function SDIhandle_from_id
accessing file filename.

openMODISfile unable to allocate
memory for the MODIS filename
filename.

putMODISarinfo putMODISarinfo unable to write an
array attribute without an
attribute name input.

putMODISarinfo unable to write the
attribute array attribute without
data type information.

putMODISarinfo unable to write the
attribute array attribute without
the value buffer.

putMODISarinfo unable to write the
attribute array attribute without
the name of the array it is
associated with.

No arrayname argument
was provided.

putMODISarinfo unable to write
n_elements attribute array
attribute values.

putMODISarinfo unable to write the
attribute array attribute in a file
opened for read only.

putMODISarinfo cannot find array
arrayname.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 E-16

C Routine Error Message Description

putMODISarinfo
(continued)

putMODISarinfo unable to find the
groupname data group containing the
arrayname array.

searchMODISgroup fails to search
object objectname in group
groupname because Vattach fails.

searchMODISgroup unable to find the
specified Vgroup group groupname.

searchMODISgroup fails to obtain
objectname's tag and reference
number.

This may be preceeded
by one of the following
three messages:

putMODISarinfo cannot find the
arrayname array in the groupname
data group.

The SDS array structure
could not be found in
the specified Vgroup
data group.

putMODISarinfo unable to write the
attribute array attribute with a
size byte value.

Each HDF attribute is
limited to 32K of
memory.

putMODISarinfo unable to write the
attribute array attribute of data
type data_type.

putMODISarinfo detected FAIL from
HDF procedure SDselect attempting
to write the attribute array
attribute.

putMODISarinfo detected FAIL from
HDF procedure SDsetattr attempting
to write the attribute array
attribute.

putMODISarinfo detected FAIL from
HDF procedure SDendaccess
attempting to write the attribute
array attribute

WARNING: Vgroup groupname contains
non-existing SDS object with
reference id ref_id.

Information about an
SDS array structure that
doesn't really exist has
been found in the
Vgroup data group
being accessed. While
this will not directly
prevent writing the
specified local array
attribute, it does identify
a probable defect in the
HDF file.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 E-17

C Routine Error Message Description

putMODISarray putMODISarray unable to write to
the arrayname array with a NULL
file MODFILE structure.

putMODISarray unable to write to an
array without an array name input.

putMODISarray unable to write to
the arrayname array without array
dimension input.

putMODISarray unable to write to
the arrayname array without a data
buffer.

putMODISarray unable to write to
the arrayname array in file opened
for read only.

putMODISarray cannot find the
arrayname array.

putMODISarray cannot find the
arrayname array in the groupname
data group.

putMODISarray unable to find the
groupname data group containing the
arrayname array.

putMODISarray unable to write data
to invalid array structure
locations in the arrayname array.

SDS_footprintOK detected FAIL from
HDF procedure SDgetinfo.

Unable to access data at invalid
array structure locations “start[0]
... start[r]”.

This error message may
be preceeded by one of
the following two
messages:

putMODISarray detected FAIL from
HDF procedure SDselect while
attempting to write to the
arrayname array.

putMODISarray detected FAIL from
HDF procedure SDgetinfo while
attempting to write to the
arrayname array.

putMODISarray detected FAIL from
HDF procedure SDwritedata while
attempting to write to the
arrayname array.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 E-18

C Routine Error Message Description

putMODISarray
(continued)

putMODISarray detected FAIL from
HDF procedure SDendaccess while
attempting to write to the
arrayname array.

putMODISdiminfo putMODISdiminfo unable to write an
dimension attribute without an
attribute name input.

putMODISdiminfo unable to write the
attribute dimension attribute
without data type information.

putMODISdiminfo unable to write the
attribute dimension attribute
without the value buffer.

putMODISdiminfo unable to write the
attribute dimension attribute
without the name of the array it is
associated with.

No arrayname argument
was provided.

putMODISdiminfo unable to write
n_elements attribute dimension
attribute values.

putMODISdiminfo unable to write the
attribute dimension attribute in a
file opened for read only.

putMODISdiminfo cannot find array
arrayname.

putMODISdiminfo unable to find the
groupname data group containing the
arrayname array.

searchMODISgroup fails to search
object objectname in group
groupname because Vattach fails.

searchMODISgroup unable to find the
specified Vgroup group groupname.

searchMODISgroup fails to obtain
objectname's tag and reference
number.

This may be preceeded
by one of the following
three messages:

putMODISdiminfo cannot find the
arrayname array in the groupname
data group.

The SDS array structure
could not be found in
the specified Vgroup
data group.

putMODISdiminfo unable to write the
attribute dimension attribute with
a size byte value.

Each HDF attribute is
limited to 32K of
memory.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 E-19

C Routine Error Message Description

putMODISdiminfo
(continued)

putMODISdiminfo unable to write the
attribute dimension attribute of
data type data_type.

putMODISdiminfo detected FAIL from
HDF procedure SDselect attempting
to write the attribute dimension
attribute.

putMODISdiminfo detected FAIL from
HDF procedure SDgetinfo attempting
to write the attribute dimension
attribute.

putMODISdiminfo detected FAIL from
HDF procedure SDselect attempting
to write the attribute dimension
attribute.

putMODISdiminfo unable to write the
attribute attribute to non-existing
dimension dimension of the
arrayname array.

putMODISdiminfo detected FAIL from
HDF procedure SDgetdimid attempting
to write the attribute dimension
attribute.

putMODISdiminfo detected FAIL from
HDF procedure SDsetattr attempting
to write the attribute dimension
attribute.

putMODISdiminfo detected FAIL from
HDF procedure SDendaccess
attempting to write the attribute
dimension attribute.

WARNING: Vgroup groupname contains
non-existing SDS object with
reference id ref_id.

Information about an
SDS array structure that
doesn't really exist has
been found in the
Vgroup data group
being accessed. While
this will not directly
prevent writing the
specified local
dimension attribute, it
does identify a probable
defect in the HDF file.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 E-20

C Routine Error Message Description

putMODISfileinfo putMODISfileinfo unable continue
with empty input.

putMODISfileinfo unable to store
n_elements attribute global
attribute values.

putMODISfileinfo unable to write
metadata in file opened for read
only.

putMODISfileinfo unable to identify
data type “data_type”.

putMODISfileinfo unable to write
attribute metadata with a size byte
value.

putMODISfileinfo detected FAIL from
HDF procedure SDsetattr.

putMODIStable putMODIStable unable to write to
the tablename table with a NULL
file MODFILE structure.

putMODIStable unable to write to a
table without an table name input.

putMODIStable unable to write to
the tablename table without table
dimension input.

putMODIStable unable to write to
the tablename table without a data
buffer.

putMODIStable unable to write to
the tablename table in file opened
for read only.

putMODIStable cannot find the
tablename table.

putMODIStable cannot find the
tablename table in the groupname
data group.

putMODIStable unable to find the
groupname data group containing the
tablename table.

putMODIStable detected FAIL from
HDF procedure Vattach while
attempting to write to the
tablename table.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 E-21

C Routine Error Message Description

putMODIStable
(continued)

putMODIStable detected FAIL from
HDF procedure VSattach while
attempting to write to the
tablename table.

putMODIStable detected FAIL from
HDF procedure VSinquire while
attempting to write to the
tablename table.

putMODIStable unable to place
datasize bytes of data into recno
record size byte records in
tablename table.

putMODIStable unable to write data
to table tablename to invalid table
structure record start.

The start location must
be contiguous to the
location of records
already in the table.

putMODIStable detected FAIL from
HDF procedure VSseek while
attempting to write to the
tablename table.

putMODIStable detected FAIL from
HDF procedure VSwrite while
attempting to write to the
tablename table.

putMODIStable detected FAIL from M-
API procedure set_Vhasdata while
attempting to write to the
tablename table.

Sometimes it is necessary to read from the table
structure before writing to it. The following two
error messages may occur only in these
circumstances:

putMODIStable memory allocation
failure while attempting to write
to the tablename table.

putMODIStable detected FAIL from
HDF procedure VSread while
attempting to write to the
tablename table.

The first record has
successfully been
written to the table,
however M-API was
unable to write an
associated attribute into
the file. This will cause a
subsequent write to the
table appending
additional records to
inadvertantly overwrite
this first one.

putMODIStable memory allocation
failure while attempting to write
to the tablename table.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 E-22

C Routine Error Message Description

putMODIStable
(continued)

putMODIStable detected FAIL from
HDF procedure VSread while
attempting to write to the
tablename table.

substrMODISECSinfo substrMODISECSinfo unable to
continue without char_value input.

substrMODISECSinfo unable to
continue without n_strings input.

substrMODISECSinfo unable to
continue without substr pointer
array.

substrMODISECSinfo unable to
continue with invalid n_elements
n_elements.

substrMODISECSinfo unable to fit
loc_n_strings substrings into
*n_strings pointers substr array.

substrMODISECSinfo detected MFAIL
from MAPI procedure parse_string
attempting to parse the char_value
char_value.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 E-23

Table E-2 Error Messages for FORTRAN Routines

FORTRAN
Routine

Error Message Description

CLMFIL CLMFIL cannot close a null file.

CLMFIL detected FAIL from HDF function SDend.
Unable to close filename.

File could not be closed
because access identifiers
to data objects are still
attached to the file.
Changes to the file may be
lost.

WARNING: CLMFIL closed new file filename
without complete header information.

The file has been
successfully closed, but
CPMFIL should be used
instead so that the
required file header
information will be
included.

CLMFIL cannot close a non-existing file. The modfil array does not
contain valid file access
information.

CPMFIL CPMFIL unable to continue with empty input.

CLMFIL detected FAIL from HDF function Hclose.
Unable to close file.

CLMFIL detected FAIL from HDF function Sdend.
Unable to close file.

CPMFIL detected FAIL from HDF procedure
Hclose. Unable to close file.

File could not be closed
because access identifiers
to data objects are still
attached to the file.
Changes to the file may be
lost.

WARNING: CPMFIL revised header data of pre-
existing filename file.

The file has been
successfully closed, but
CLMFIL should be used
instead to prevent
modification to the MODIS
HDF file’s metadata.

WARNING: CPMFIL unable to revise header data
of filename file open for read-only.

The file has been
successfully closed and
was accessed only for
reading.

CRMAR CRMAR unable to make a new arrayname array
with a NULL file MODFILE structure.

CRMAR unable to make a new array without an
array name input.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 E-24

FORTRAN
Routine

Error Message Description

CRMAR
(cont)

CRMAR unable to make a new arrayname array
without array dimension input.

CRMAR unable to make a new arrayname array
without array data type input.

CRMAR unable to make a new arrayname array in
file opened for read only.

CRMAR found arrayname array already exists.

CRMAR found arrayname array already exists in
data group “groupname”.

CRMAR unable to find data group groupname to
place new arrayname array in.

CRMAR unable to create arrayname array of data
type data_type.

CRMAR unable to create arrayname array with
rank dimensions.

CRMAR detected FAIL from HDF procedure
SDcreate attempting to create arrayname array.

CRMAR detected FAIL from HDF procedure Sdend
access while attempting to create arrayname
array.

CRMAR detected FAIL from HDF procedure Vattach
attempting to create arrayname array.

CRMAR detected FAIL from HDF procedure
Vaddtagref attempting to create arrayname
array.

CRMAR detected FAIL from HDF procedure Vdetach
attempting to create arrayname array.

CRMTBL CRMTBL unable to make a new table without a
table name input.

CRMTBL unable to make a new tablename table
with a NULL file MODFILE structure.

CRMTBL unable to make a new tablename table
without field names input.

CRMTBL unable to make a new tablename table
without field data types input.

CRMTBL unable to make a new tablename table in
file opened for read only.

CRMTBL found the tablename table already
exists.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 E-25

FORTRAN
Routine

Error Message Description

CRMTBL
(cont)

CRMAR found arrayname array already exists in
data group “groupname”.

CRMAR unable to find data group groupname to
place new arrayname array in.

CRMTBL unable to create tablename table with #
byte records.

Vdata table records are
limited to 32K each.

CRMTBL unable to create tablename table with
data_type data types.

CRMTBL unable to allocate memory for fieldname
temporary buffer used to create the tablename
table.

CRMTBL unable to allocate memory for data_type
temporary buffer used to create tablename
table.

CRMTBL found the tablename table to have no
fields in the fieldname string fieldname.

CRMTBL unable to support the creation of #
fields in the field name string “fieldname”
for the “tablename” table.

Vdata table records are
limited to fields

CRMTBL found the tablename table to have #
data types in the data type string data_type
instead of #.

One data type must be
supplied for each field in
the Vdata table.

CRMTBL detected FAIL from HDF procedure
VSattach attempting to create the tablename
table.

CRMTBL detected fail from HDF procedure
VSfdefine for field and data_type of the
tablename table.

CRMTBL detected FAIL from HDF procedure
VSsetfields creating the tablename table.

CRMTBL unable to allocate memory for dummy
field buffer used to create the tablename
table.

CRMTBL detected FAIL from HDF procedure
VSwrite creating the tablename table.

CRMTBL detected FAIL from HDF procedure
Vattach attempting to create the tablename
table.

CRMTBL detected FAIL from HDF procedure
Vaddtagref attempting to create the tablename
table.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 E-26

FORTRAN
Routine

Error Message Description

CRMTBL
(cont)

CRMTBL detected FAIL from HDF procedure
Vdetach attempting to create the tablename
table.

nccrmtbl failed at data_type conversion.

nccrmtbl out of memory.

GMAR GMAR unable to read from the arrayname array
with a NULL file MODFILE structure.

GMAR unable to read from an array without an
array name input.

GMAR unable to read from the arrayname array
without array dimension input.

GMAR unable to read from the arrayname array
without a data buffer.

GMAR cannot find the arrayname array.

GMAR cannot find the arrayname array in the
groupname data group.

GMAR unable to find the groupname data group
containing the arrayname array.

GMAR unable to read data from invalid array
structure locations in the arrayname array.

SDS_footprintOK detected FAIL from HDF
procedure Sdgetinfo.

Unable to access data at invalid array
structure locations “start[0] ... start[r]”.

This error message may be
preceeded by one of the
following two messages:

GMAR detected FAIL from HDF procedure SDselect
while attempting to read from the arrayname
array.

GMAR detected FAIL from HDF procedure
SDgetinfo while attempting to read from the
arrayname array.

GMAR detected FAIL from HDF procedure
SDwritedata while attempting to read from the
arrayname array.

GMAR detected FAIL from HDF procedure
SDendaccess while attempting to read from the
arrayname array.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 E-27

FORTRAN
Routine

Error Message Description

GMARDM GMARDM detected FAIL from HDF procedure
SDendaccess attempting to detach from the
arrayname array.

The output from GMARDM
may not be valid if
SDendaccess fails.

*rank (if provided) is set to
0 if any of the errors
associated with these
messages occurs.

GMARDM unable to return the arrayname array’s
sds_rank dimension sizes in a rank element
dimsizes array.

GMARDM will not attempt
to write to the dimsizes
output array, but it will
return the rank of the target
HDF array structure. The
dimsizes array needs to
have at least this many
elements.

GMARDM unable to access the arrayname array
with a NULL file MODFILE structure.

GMARDM unable to access an array without an
array name input.

GMARDM unable to return the arrayname array’s
dimensions without a dimsizes array.

GMARDM cannot find the arrayname array.

GMARDM cannot find the arrayname array in the
groupname data group.

GMARDM unable to find the groupname data group
containing the arrayname array.

GMARDM cannot get an sds_id for the arrayname
array.

GMARDM detected FAIL from HDF procedure
SDgetinfo attempting to access the arrayname
array.

GMARDM detected FAIL from HDF procedure
SDendaccess attempting to detach from the
arrayname array.

The output from GMARDM
may not be valid if
SDendaccess fails.

*rank (if provided) is set to
0 if any of the errors
associated with these
messages occurs.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 E-28

FORTRAN
Routine

Error Message Description

GMARDM
(cont)

GMARDM unable to return the arrayname array’s
sds_rank dimension sizes in a rank element
dimsizes array.

GMARDM will not attempt
to write to the dimsizes
output array, but it will
return the rank of the target
HDF array structure. The
dimsizes array needs to
have at least this many
elements.

GMARIN GMARIN unable continue with empty n_elements.

GMARIN unable to access an array attribute
without an attribute name input.

No arrayname attribute was
provided.

GMARIN unable to access the attribute
attribute without the name of the array it is
associated with.

GMARIN cannot find array “arrayname”.

GMARIN unable to find the groupname data group
containing the arrayname array.

searchMODISgroup fails to search object
objectname in group groupname because Vattach
fails.

searchMODISgroup unable to find the specified
Vgroup group groupname.

searchMODISgroup fails to obtain objectname's
tag and reference number.

This may be preceeded by
one of the following three
messages:

GMARIN cannot find the arrayname array in the
groupname data group.

The Vdata table could not
be found in the specified
Vgroup data group.

GMARIN detected FAIL retrieving the data type
string for the attribute attribute using
DFNT_to_datatype.

M-API currently does not
recogniize the HDF
number types 3 (unsigned
char), 7 (float128), 27
(unsigned int64), 28
(int128), 30 (unsigned
int128), 42 (char16), 43
(unsigned char 16), or any
greater than 512 (machine
specific, custom, or little
endian storage formats).

GMARIN cannot find local array attribute
attribute.

GMARIN detected FAIL from HDF procedure
SDselect attempting to read the attribute
attribute.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 E-29

FORTRAN
Routine

Error Message Description

GMARIN
(cont)

GMARIN detected FAIL from HDF procedure
SDattrinfo attempting to read the attribute
attribute.

GMARIN detected FAIL from HDF procedure
SDreadattr attempting to read the attribute
attribute.

GMARIN unable to read local array attribute
without output buffer for attribute.

GMARIN detected FAIL from HDF procedure
SDendaccess attempting to read the attribute
attribute.

*n_elements is set to 0 if
any of the errors
associated with the
messages above occur.

WARNING: Vgroup groupname contains non-
existing SDS object with reference id ref_id.

Information about an SDS
array structure that doesn't
really exist has been found
in the Vgroup data group
being accessed. While this
will not directly prevent
reading the specified local
array attribute, it does
identify a probable defect
in the HDF file.

GMARIN unable to update the data type because
the memory for dtype is too small.

GMARIN unable continue with empty n_elements.

GMARIN unable to access an array attribute
without an attribute name input.

GMARIN unable to access the attribute
attribute without the name of the array it is
associated with.

No arrayname attribute was
provided.

GMARIN cannot find array “arrayname”.

GMARIN unable to find the groupname data group
containing the arrayname array.

searchMODISgroup fails to search object
objectname in group groupname because Vattach
fails.

searchMODISgroup unable to find the specified
Vgroup group groupname.

searchMODISgroup fails to obtain objectname's
tag and reference number.

This may be preceeded by
one of the following three
messages:

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 E-30

FORTRAN
Routine

Error Message Description

GMARIN
(cont)

GMARIN cannot find the arrayname array in the
groupname data group.

The Vdata table could not
be found in the specified
Vgroup data group.

GMARIN detected FAIL retrieving the data type
string for the attribute attribute using
DFNT_to_datatype.

M-API currently does not
recogniize the HDF
number types 3 (unsigned
char), 7 (float128), 27
(unsigned int64), 28
(int128), 30 (unsigned
int128), 42 (char16), 43
(unsigned char 16), or any
greater than 512 (machine
specific, custom, or little
endian storage formats).

GMARIN cannot find local array attribute
attribute.

GMARIN detected FAIL from HDF procedure
SDselect attempting to read the attribute
attribute.

GMARIN detected FAIL from HDF procedure
SDattrinfo attempting to read the attribute
attribute.

GMARIN detected FAIL from HDF procedure
SDreadattr attempting to read the attribute
attribute.

GMARIN unable to read local array attribute
without output buffer for attribute.

GMARIN detected FAIL from HDF procedure
SDendaccess attempting to read the attribute
attribute.

*n_elements is set to 0 if
any of the errors
associated with the
messages above occur.

WARNING: Vgroup groupname contains non-
existing SDS object with reference id ref_id.

Information about an SDS
array structure that doesn't
really exist has been found
in the Vgroup data group
being accessed. While this
will not directly prevent
reading the specified local
array attribute, it does
identify a probable defect
in the HDF file.

GMARIN unable to update the data type because
the memory for dtype is too small.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 E-31

FORTRAN
Routine

Error Message Description

GMDMIN GMDMIN unable continue with empty n_elements.

GMDMIN unable to access an array attribute
without an attribute name input.

GMDMIN unable to access the attribute
attribute without the name of the array it is
associated with.

No arrayname attribute was
provided.

GMDMIN cannot find array “arrayname”.

GMDMIN unable to find the groupname data group
containing the arrayname array.

searchMODISgroup fails to search object
objectname in group groupname because Vattach
fails.

searchMODISgroup unable to find the specified
Vgroup group groupname.

searchMODISgroup fails to obtain objectname's
tag and reference number.

This may be preceeded by
one of the following three
messages:

GMDMIN cannot find the arrayname array in the
groupname data group.

The Vdata table could not
be found in the specified
Vgroup data group.

GMDMIN detected FAIL retrieving the data type
string for the attribute attribute using
DFNT_to_datatype.

M-API currently does not
recogniize the HDF
number types 3 (unsigned
char), 7 (float128), 27
(unsigned int64), 28
(int128), 30 (unsigned
int128), 42 (char16), 43
(unsigned char 16), or any
greater than 512 (machine
specific, custom, or little
endian storage formats).

GMDMIN cannot find local array dimension
attribute attribute.

GMDMIN detected FAIL from HDF procedure
SDselect attempting to read the attribute
attribute

GMDMIN detected FAIL from HDF procedure
SDgetinfo attempting to read the attribute
attribute.

GMDMIN detected FAIL from HDF procedure
SDattrinfo attempting to read the attribute
attribute.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 E-32

FORTRAN
Routine

Error Message Description

GMDMIN
(cont)

GMDMIN unable to retrieve an attribute
attribute for dimension dimension. The
arrayname array has rank dimensions.

GMDMIN detected FAIL from HDF procedure
SDgetdimid attempting to read the attribute
attribute.

GMDMIN detected FAIL from HDF procedure
SDreadattr attempting to read the attribute
attribute.

GMDMIN unable to read local array attribute
without output buffer for attribute.

GMDMIN detected FAIL from HDF procedure
SDendaccess attempting to read the attribute
attribute.

*n_elements is set to 0 if
any of the errors
associated with the
messages above occur.

WARNING: Vgroup groupname contains non-
existing SDS object with reference id ref_id.

Information about an SDS
array structure that doesn't
really exist has been found
in the Vgroup data group
being accessed. While this
will not directly prevent
reading the specified local
array attribute, it does
identify a probable defect
in the HDF file.

GMDMIN unable to update the data type because
the memory for dtype is too small.

GMFIN GMFIN detected FAIL from HDF procedure
SDattrinfo.

GMFIN detected FAIL from HDF procedure
SDreadattr.

GMFLDS GMFLDS unable to access the tablename table
with a NULL file MODFILE structure.

GMFLDS unable to access a table without a
table name input.

GMFLDS cannot find tablename table.

GMFLDS unable to find the groupname data group
containing the tablename table.

searchMODISgroup fails to search object
objectname in group groupname because Vattach
fails.

searchMODISgroup unable to find the specified
Vgroup group groupname.

This may be preceeded by
one of the following two
messages:

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 E-33

FORTRAN
Routine

Error Message Description

GMFLDS
(cont)

GMFLDS cannot find the tablename table in the
groupname data group.

searchMODISgroup fails to obtain objectname's
tag and reference number.

This may be preceeded by
the following message:

The Vdata table could not
be found in the specified
Vgroup data group.

GMFLDS detected FAIL from HDF procedure
VSattach attempting to access the tablename
table.

A problem occurred with
retrieving information
about the number and
names of the table’s fields.

GMFLDS detected FAIL from HDF procedure
VSgetfields.

GMFLDS detected FAIL retrieving the data type
string for the tablename table using
Vfdatatypes.

VFdatatypes detected FAIL from HDF routine
Vfnfields.

VFdatatypes detected unrecognized HDF number
type number type.

This error message may be
preceeded by one of the
following two messages:

M-API currently does not
recogniize number types 3
(unsigned char), 7
(float128), 27 (unsigned
int64), 28 (int128), 30
(unsigned int128), 42
(char16), 43 (unsigned
char 16), or any greater
than 512 (machine
specific, custom, or little
endian storage formats).

GMFLDS detected FAIL from HDF procedure
VSinquire.

A problem occurred with
retrieving information
about the number of
records in the table.

GMFLDS detected FAIL from HDF procedure
VSinquire.

A problem occurred with
retrieving information
about the number of
records in the table.

*stringlen is set to 0 if any
of the errors associated
with the messages above
occur.

GMFLDS unable to fit tablename table's <string
length> byte field names string into output
string of unknown length.

The length of the output
string fieldname was not
provided in the parameter
stringlen.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 E-34

FORTRAN
Routine

Error Message Description

GMFLDS
(cont)

GMFLDS unable to fit the tablename table's
<string length> byte field names into
*stringlen byte output string.

stringlen will return the
array length required to
hold the table’s field
names.

GMFLDS unable to fit tablename table's data
types string into output string of unknown
length.

The length of the output
string data_type was not
provided in the parameter
stringlen.

GMFLDS unable to fit the tablename table's
<string length> byte data types into
*stringlen byte output string.

VFdatatypes unable to fit data types into
output string.

This error message will be
preceeded by:

*stringlen will return the
array length required to
hold the table’s data type
string. If both the field
names and the data types
were requested, the larger
of the two array lengths is
returned.

GMTBL GMTBL unable continue without buffer size
information.

A location for buffsize
information was not
provided.

GMTBL unable to read from the tablename table
with a NULL file MODFILE structure.

GMTBL unable to read from a table without a
table name input.

GMTBL unable to read from the tablename table
without a data buffer.

GMTBL cannot find tablename table.

GMTBL unable to find the groupname data group
containing the tablename table.

searchMODISgroup fails to search object
objectname in group groupname because Vattach
fails.

searchMODISgroup unable to find the specified
Vgroup group groupname.

This may be preceeded by
one of the following two
messages:

The Vdata table could not
be found in the specified
Vgroup data group.

GMTBL cannot find the tablename table in the
groupname data group.

searchMODISgroup fails to obtain objectname's
tag and reference number.

This may be preceeded by
the following message:

GMTBL detected FAIL from HDF procedure
VSattach attempting to access the tablename
table.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 E-35

FORTRAN
Routine

Error Message Description

GMTBL
(cont)

GMTBL unable to read data from the tablename
table from invalid table structure record
start.

GMTBL unable to read data from the tablename
table from invalid table structure locations.

Either access to some
records or one or more
fields requested do not
exist in the table.

GMTBL detected FAIL from HDF procedure
VSsetfields attempting to read tablename
table.

GMTBL detected FAIL from HDF procedure
VSsizeof attempting to read tablename table.

GMTBL detected FAIL from HDF procedure VSseek
attempting to read tablename table.

GMTBL detected FAIL from HDF procedure VSread
attempting to read tablename table.

*buffsize is set to 0 if any of
the errors associated with
the messages above
occurs.

GMTBL detected FAIL from HDF procedure
VSinquire.

Should this error occur,
getMODIStable will still
return MAPIOK (because
the data were successfully
retrieved) and *buffsize is
set correctly.

GMTBL unable to fit <output size> bytes of
tablename table's data into a buffsize byte
output buffer.

getMODIStable will not
attempt to write to the data
output buffer, but it will
return the buffer length (in
bytes) required to hold the
requested records from
the table.

WARNING: Vgroup groupname contains non-exist
Vdata object with reference id ref_id.

Information about a Vdata
table that doesn't really
exist has been found in the
Vgroup data group being
accessed. While this will
not directly prevent
reading the specified
Vdata table, it does identify
a probable defect in the
HDF file.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 E-36

FORTRAN
Routine

Error Message Description

GMTBL
(cont)

WARNING: getMODIStable retrieved dummy record
from empty table tablename.

The record retrieved from
the table does not contain
geophysical data.
getMODIStable returns
MAPIOK (0), however. This
situation can only occur if
NO geophysical data were
written into the table or the
single record in the Vdata
was not written using M-
API.

OPMFIL OPMFIL unable to access a file without a
filename input.

OPMFIL unable to open file filename without
access mode input.

OPMFIL unable to allocate memory for a MODIS
file structure for file filename.

OPMFIL unable to recognize access type access
to open file filename.

OPMFIL unable to find file filename.

OPMFIL detected FAIL from HDF procedure
SDstart opening file filename.

May be unable to open the
HDF file because it is write-
protected.

OPMFIL detected NULL from HDF function
SDIhandle_from_id accessing file filename.

openMODISfile unable to allocate memory for
the MODIS filename filename.

PMAR PMAR unable to write to the arrayname array
with a NULL file MODFILE structure.

PMAR unable to write to an array without an
array name input.

PMAR unable to write to the arrayname array
without array dimension input.

PMAR unable to write to the arrayname array
without a data buffer.

PMAR unable to write to the arrayname array in
file opened for read only.

PMAR cannot find the arrayname array.

PMAR cannot find the arrayname array in the
groupname data group.

PMAR unable to find the groupname data group
containing the arrayname array.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 E-37

FORTRAN
Routine

Error Message Description

PMAR
(cont)

PMAR unable to write data to invalid array
structure locations in the arrayname array.

SDS_footprintOK detected FAIL from HDF
procedure Sdgetinfo.

Unable to access data at invalid array
structure locations “start[0] ... start[r]”.

This error message may be
preceeded by one of the
following two messages:

PMAR detected FAIL from HDF procedure SDselect
while attempting to write to the arrayname
array.

PMAR detected FAIL from HDF procedure
SDgetinfo while attempting to write to the
arrayname array.

PMAR detected FAIL from HDF procedure
SDwritedata while attempting to write to the
arrayname array.

PMAR detected FAIL from HDF procedure
SDendaccess while attempting to write to the
arrayname array.

PMARIN PMARIN unable to write an array attribute
without an attribute name input.

PMARIN unable to write the attribute array
attribute without data type information.

PMARIN unable to write the attribute array
attribute without the value buffer.

PMARIN unable to write the attribute array
attribute without the name of the array it is
associated with.

No arrayname argument
was provided.

PMARIN unable to write n_elements attribute
array attribute values.

PMARIN unable to write the attribute array
attribute in a file opened for read only.

PMARIN cannot find array arrayname.

PMARIN unable to find the groupname data group
containing the arrayname array.

searchMODISgroup fails to search object
objectname in group groupname because Vattach
fails.

searchMODISgroup unable to find the specified
Vgroup group groupname.

searchMODISgroup fails to obtain objectname's
tag and reference number.

This may be preceeded by
one of the following three
messages:

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 E-38

FORTRAN
Routine

Error Message Description

PMARIN
(cont)

PMARIN cannot find the arrayname array in the
groupname data group.

The SDS array structure
could not be found in the
specified Vgroup data
group.

PMARIN unable to write the attribute array
attribute with a size byte value.

Each HDF attribute is
limited to 32K of memory.

PMARIN unable to write the attribute array
attribute of data type data_type.

PMARIN detected FAIL from HDF procedure
SDselect attempting to write the attribute
array attribute.

PMARIN detected FAIL from HDF procedure
SDsetattr attempting to write the attribute
array attribute.

PMARIN detected FAIL from HDF procedure
SDendaccess attempting to write the attribute
array attribute

WARNING: Vgroup groupname contains non-
existing SDS object with reference id ref_id.

Information about an SDS
array structure that doesn't
really exist has been found
in the Vgroup data group
being accessed. While this
will not directly prevent
writing the specified local
array attribute, it does
identify a probable defect
in the HDF file.

PMDMIN PMDMIN unable to write an dimension attribute
without an attribute name input.

PMDMIN unable to write the attribute dimension
attribute without data type information.

PMDMIN unable to write the attribute dimension
attribute without the value buffer.

PMDMIN unable to write the attribute dimension
attribute without the name of the array it is
associated with.

No arrayname argument
was provided.

PMDMIN unable to write n_elements attribute
dimension attribute values.

PMDMIN unable to write the attribute dimension
attribute in a file opened for read only.

PMDMIN cannot find array arrayname.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 E-39

FORTRAN
Routine

Error Message Description

PMDMIN
(cont)

PMDMIN unable to find the groupname data group
containing the arrayname array.

searchMODISgroup fails to search object
objectname in group groupname because Vattach
fails.

searchMODISgroup unable to find the specified
Vgroup group groupname.

searchMODISgroup fails to obtain objectname's
tag and reference number.

This may be preceeded by
one of the following three
messages:

PMDMIN cannot find the arrayname array in the
groupname data group.

The SDS array structure
could not be found in the
specified Vgroup data
group.

PMDMIN unable to write the attribute dimension
attribute with a size byte value.

Each HDF attribute is
limited to 32K of memory.

PMDMIN unable to write the attribute dimension
attribute of data type data_type.

PMDMIN detected FAIL from HDF procedure
SDselect attempting to write the attribute
dimension attribute.

PMDMIN detected FAIL from HDF procedure
SDgetinfo attempting to write the attribute
dimension attribute.

PMDMIN detected FAIL from HDF procedure
SDselect attempting to write the attribute
dimension attribute.

PMDMIN unable to write the attribute attribute
to non-existing dimension dimension of the
arrayname array.

PMDMIN detected FAIL from HDF procedure
SDgetdimid attempting to write the attribute
dimension attribute.

PMDMIN detected FAIL from HDF procedure
SDsetattr attempting to write the attribute
dimension attribute.

PMDMIN detected FAIL from HDF procedure
SDendaccess attempting to write the attribute
dimension attribute.

M-API User’s Guide, Version 2.0 SDST-064
Change Notice 1

October 10, 1996 E-40

FORTRAN
Routine

Error Message Description

PMDMIN
(cont)

WARNING: Vgroup groupname contains non-
existing SDS object with reference id ref_id.

Information about an SDS
array structure that doesn't
really exist has been found
in the Vgroup data group
being accessed. While this
will not directly prevent
writing the specified local
dimension attribute, it does
identify a probable defect
in the HDF file.

PMFIN PMFIN unable continue with empty input.

PMFIN unable to store n_elements attribute
global attribute values.

PMFIN unable to write metadata in file opened
for read only.

PMFIN unable to identify data type
“data_type”.

PMFIN unable to write attribute metadata with
a size byte value.

PMFIN detected FAIL from HDF procedure
SDsetattr.

PMTBL PMTBL unable to write to the tablename table
with a NULL file MODFILE structure.

PMTBL unable to write to a table without an
table name input.

PMTBL unable to write to the tablename table
without table dimension input.

PMTBL unable to write to the tablename table
without a data buffer.

PMTBL unable to write to the tablename table
in file opened for read only.

PMTBL cannot find the tablename table.

PMTBL cannot find the tablename table in the
groupname data group.

PMTBL unable to find the groupname data group
containing the tablename table.

PMTBL detected FAIL from HDF procedure Vattach
while attempting to write to the tablename
table.

PMTBL detected FAIL from HDF procedure
VSattach while attempting to write to the
tablename table.

